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Fungal genome annotation is the starting point for analysis of genome content. This generally involves the application
of diverse methods to identify features on a genome assembly such as protein-coding and non-coding genes, repeats and
transposable elements, and pseudogenes. Here, we describe tools and methods leveraged for eukaryotic genome annotation
with a focus on the annotation of fungal nuclear and mitochondrial genomes. We highlight the application of the latest
technologies and tools to improve the quality of predicted gene sets. The Broad Institute eukaryotic genome annotation
pipeline is described as one example of how such methods and tools are integrated into a sequencing center’s production

genome annotation environment.
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1. Introduction

Fifteen years ago heralded the first genome sequence
of a free-living eukaryote, that of the fungal species
Schizosaccharomyces cerevisiae (Goffeau et al. 1996).
Since that time, 315 eukaryotic genomes have been
sequenced and assembled, 108 of which are fungal (http://
www.ncbi.nlm.nih.gov/genomes/static/gpstat.html). Much
has been learned as a result of genome sequencing, espe-
cially in the area of fungal genomics, from mechanisms
of fungal genome evolution, fungi-specific gene family
innovations, and the genomic potential for sexual cycles
(reviewed in Cuomo and Birren 2010). Another 47 fun-
gal genome sequences are currently in progress and, with
the recent revolution in genome sequencing technologies
and marked decreases in sequencing costs, hundreds to
thousands of fungal genome projects are currently in the
planning stages.

Genome sequencing and assembly yields an enormous
string of characters using only a four-letter DNA alphabet
(G, A, T, C), which, by itself, is of very limited utility.
These sequences may differ substantially, due to inher-
ent properties such as GC content, repeat content and, if
diploid, the rate of polymorphism. The goal of genome
annotation is to decipher the four-letter code to identify the
features of greatest biological importance, most notably the
genes. Although the genome sequence substrates for anno-
tation may vary, the overall strategies taken to decipher
each code are quite similar. This review describes many
of the bioinformatics methods and tools that can model
fungal (and more generally, eukaryotic) genes and predict

their functions. We end the review with a summary of how
these methods are glued together into a more comprehen-
sive annotation pipeline, as currently deployed at the Broad
Institute.

2. Discovery of protein-coding genes

In addition to the advances in sequencing technology,
gene-finding efforts have made significant leaps in accu-
racy and general utility. The importance of gene finding
is reflected by the continual innovation of bioinformatics
methods. Gene-finding software tools generally fall into
one of two categories: sequence homology detection or ab
initio gene prediction. Each strategy has advantages and
disadvantages, as elaborated below, but when used together,
they provide a powerful, robust method to identify the
components of genes.

2.1. Sequence homology-based gene structure
annotation methods

Homology-based gene finding methods are considered
strong evidence to precisely localize and model gene struc-
tures where experimentally verified data is available or
when conservation patterns can be inferred from align-
ments of genomes from related species. Specifics vary,
but most tools align sequences from databases of pro-
tein or transcripts to the genome so that gaps are allowed
at introns, and the consensus dinculeotide GT (or, to a
lesser extent, GC) donor and AG acceptor splice sites of
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introns are preferred at internal alignment segment bound-
aries. These spliced alignments provide strong evidence
for components of gene structures, in many cases fully
resolving complete exons and introns, and at the very least,
highlighting a candidate gene location.

2.1.1. Gene structure annotation using transcriptome
sequences

Transcript sequences, when derived from the same organ-
ism whose genome is being sequenced, provide the most
accurate form of evidence for resolving gene structures, as
they are highly identical to the genome and precisely delin-
eate intron—exon boundaries. These transcript sequences
can include (1) expressed sequence tags (ESTs), sequences
derived from single- pass Sanger sequencing reads of the 5’
or 3’ termini of cDNA clones, (2) full-length cDNAs (FL-
cDNAs), and most recently, (3) cDNA sequences derived
from next-generation short read transcriptome sequencing
(termed RNA-Seq). FL-cDNA sequences provide the most
useful substrate for gene structure annotation, as they ide-
ally encode the transcriptional start site, all exons of a fully
spliced transcript, and specify the polyadenylation cleav-
age site at the 3’ end. With accurate spliced alignments of
a FL-cDNAs to the genome, all components of the gene
structure are often revealed, including the open reading
frame (ORF) and terminal untranslated regions (UTRs) of
exons (Haas et al. 2002). Gene structures supported by FL-
cDNAs are generally accepted as the gold standard for gene
structure annotation; although there are some exceptions,
this general rule holds true for the vast majority of cases.
However, FL-cDNAs as currently generated by paired-end
Sanger sequencing are too expensive to routinely obtain
as a resource for genome annotation. Historically, EST
sequences have served as a more cost-effective and, there-
fore, more routinely generated resource to support genome
annotation. As with FL-cDNAs, alignments of ESTs to
genome sequences can identify expressed genes and com-
ponents of gene structures, such as intron/exon boundaries,
but, due to the limited length of a single Sanger sequencing
read, ESTs rarely resolve a gene structure in its entirety.
Further improvements to the scale and cost of next gen-
eration sequencing methods may produce longer reads at
reasonable cost in the near future. To take advantage of
conventional technologies, several approaches have been
developed, including PASA (Haas et al. 2003), ESTGenes
(Eyras et al. 2004) and CallReferenceGenes (McGuire
et al. 2008), to assemble multiple overlapping cDNA align-
ments into more full-length gene structures. These tools are
able to generate multiple transcript models per gene when
there differences in overlapping alignments that result from
alternative splicing.

For cDNA alignments to be useful for direct gene struc-
ture annotation, they must be nearly identical in sequence
to the target genome, which generally requires that the
cDNAs derive from the same species. We have found

cases where alignments with as little as 70-80% nucleotide
identity have proved useful in cross-species alignments,
but to a much lesser extent than less-divergent sequences.
The Analysis and Annotation Tool (AAT) (Huang et al.
1997) is particularly adept at cross-species spliced tran-
script alignments, especially with highly divergent species.
Many more software tools exist that are more special-
ized towards generating spliced alignments of transcript
sequences, including but not limited to EST_GENOME
(Mott 1997), sim4 (Florea et al. 1998), Spidey (Wheelan
et al. 2001), BLAT (Kent 2002) and GMAP (Wu and
Watanabe 2005). Due to the algorithmic differences under-
lying these tools, different spliced aligners generate slightly
different but complementary results. Therefore, it is some-
times beneficial to apply more than one alignment tool (e.g.
BLAT and GMAP) to the same data set and use metrics,
such as percent identity and length of the transcript aligned
coupled with splice dinucleotide consensus agreement, to
choose the best quality alignment (Haas 2003—-2007).

Next-generation sequencing of transcriptomes, termed
RNA-Seq, has recently become a powerful tool for
studying gene expression and annotating gene structure.
This technology has rapidly advanced, such that strand-
specific sequencing of tens to hundreds of millions of
paired >100 base sequencing reads is now a routine and
cost-effective operation. To be best leveraged for genome
annotation, these short RNA-Seq reads (which are even
shorter than ESTs) must first be assembled into more com-
plete transcript structures. Two general approaches have
been pursued for reconstructing transcripts from RNA-Seq
data: (1) a ‘mapping first’ strategy in which the short reads
are first aligned to the genome followed by local assembly
of the alignments into more complete transcript structures;
or (2) ‘assembly first’ de novo assembly of short reads to
reconstruct transcript sequences, which are then aligned to
the genome to resolve gene structures (reviewed in Haas
and Zody (2010)). The challenge of mapping millions
of short RNA-Seq reads to a genome while accounting
for reads that cross intron boundaries has led to the
development of new specialized spliced alignment tools,
including TopHat (Trapnell et al. 2009), GSNAP (Wu and
Nacu 2010) and MapSplice (Wang et al. 2010), among
others. With longer RNA-Seq reads (>70 base Illumina
reads), we find that the earlier-mentioned BLAT software
also performs well for generating spliced alignments of
RNA-Seq reads to fungal genomes. An example showing
strand-specific Illumina RNA-Seq reads aligned to the
Schizosaccharoymyces japonicus genome is shown in
Figure 1.

At the Broad Institute, we leverage a hybrid strategy
that involves first mapping reads to the genome, fol-
lowed by partitioning the reads and genomic regions into
disjoint sets of sequence coverage, preferably in a strand-
specific manner (complete pipeline illustrated as Figure 2).
The reads within each coverage group are next de novo
assembled into more complete transcript sequences (often
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Figure 1. Strand-specific RNA-Seq reads aligned to the Schizosaccharomyces japonicus genome as viewed in the Broad’s Integrative
Genomics Viewer. Strand-specific RNA-Seq reads are shown aligning to the top strand (top) and bottom strand (center) separately. The
left and right RNA-Seq paired fragment reads are colored red and light blue, respectively. The reference gene structure annotations for

this 11-kb region of the genome is shown at bottom colored dark blue.

full-length). These reconstructed transcripts, along with
expression values inferred from the reads incorporated into
each transcript, are then input into a PASA pipeline using
its RNA-Seq mode (as more fully described in Rhind et al.
(2011)). PASA aligns these newly assembled transcripts to
the genome using GMAP, filters invalid alignments and
those transcripts more likely resulting as artifacts of the
RNA-Seq assembly process, and reconstructs more com-
plete transcripts using its alignment assembly algorithm.
These reconstructed transcripts derived from the hybrid
de novo and alignment assembly method provide a sub-
strate for genome annotation that rivals the utility of full-
length cDNAs but at much lower cost and with minimal
sequencing effort required.

2.1.2.  Annotation of alternatively spliced transcripts

Alternative splicing, which allows multiple proteins to be
expressed from a single gene, plays a pivotal role in numer-
ous biological processes (see reviews in Keren et al. (2010)

and Stamm et al. (2005)). One of the most remarkable
cases of alternative splicing is found in the Dscam gene
of Drosophila. This gene encodes several exons for which
there are several mutually exclusive choices, yielding
combinatorial complexity with the capacity to yield over
38,000 alternatively spliced transcripts and a correspond-
ing variety of protein products (Schmucker et al. 2000).
In addition to generating protein products with altered
enzymatic functions, stability, or subcellular localizations,
alternative splicing can post-transcriptionally regulate gene
expression, targeting unproductively spliced transcripts to
the nonsense-medicated decay (NMD) pathway (reviewed
in Nicholson and Muhlemann (2010) and Stalder and
Muhlemann (2008)).

Alternative splicing is found among all eukaryotic
genomes where introns are prevalent; as more transcripts
are sequenced, especially with the large amount of RNA-
Seq data generated with the next generation of sequencing
technologies, more evidence becomes available extending
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Figure 2. Hybrid approach to RNA-Seq-based transcript recon-
struction leveraging genome alignment and de novo assembly.
RNA-Seq reads are first aligned to the genome, then partitioned
into disjoint regions of alignment coverage. Inchworm is lever-
aged to de novo assemble the read sequences into transcripts.
The resulting transcripts are aligned to the genome using a
conventional cDNA alignment tool, and PASA is leveraged to fur-
ther assemble overlapping alignments and extract gene structure
annotations.

the repertoire of genes known to be alternatively spliced.
The importance of alternative splicing is underscored by
the finding that over 90% of human genes exhibit evidence
of transcript diversity (Wang et al. 2008). Studies in plants
indicate that around 20% of the expressed genes are alter-
natively spliced (Wang and Brendel 2006; Campbell et al.
2006). Fungi exhibit some alternatively spliced transcripts
and, similarly to plants, retained introns dominate over
other types of alternative splicing events such as cassette
exons (McGuire et al., 2008). Since genome annotation
provides the first insights into each organism’s collection
of genes, properly annotating these transcript variants and
their encoded proteins is essential to producing a complete
catalog of predicted transcripts.

Transcript isoforms derived from alternative splicing
can be effectively modeled by several automated annotation
systems (Haas et al. 2003; Eyras et al. 2004; Florea et al.
2005). PASA (Haas et al. 2003), in particular, was origi-
nally designed to automate the incorporation of expressed
transcript alignments into existing eukaryotic gene struc-
ture annotations. In addition to adding UTR annotations
to existing gene structure predictions that are otherwise
consistent with the spliced alignments, PASA updates inter-
nally inconsistent regions of gene structures, and adds
gene models for alternatively spliced genes as supported
by the transcript data. PASA’s underlying algorithm for
assembling spliced transcript alignments is particularly

well suited to the problem of alternative splicing (Campbell
et al. 2006). Transcript alignments that overlap and have
inconsistent intron positions are assembled into separate
maximal alignment assemblies, and each is used indepen-
dently to automatically model a distinct isoform for the
corresponding gene.

2.1.3.  Gene structure annotation based on protein
sequence homology

Leveraging evidence of homology to sequences derived
from divergent species is best achieved using protein
conservation. Non-redundant comprehensive protein
databases, provided by GenBank (Benson et al. 2005)
or UniProt (Wu et al. 2006), yield some of the best
annotation resources, readily applicable to any previously
uncharacterized genome. Protein sequence alignments to
genomes, when found above the ‘twilight zone’ of percent
identity (30%), can yield convincing support for partial
gene structures. Often, these alignments will not extend
to start or stop codons, and so the evidence for gene
structures is more centrally located.

A widely used protein homology-based gene-modeling
tool is GeneWise (Birney et al. 2004a), which combines
protein alignment and gene prediction into a single statis-
tical model via a paired hidden Markov model (HMM).
A typical spliced protein alignment program will report
only an alignment, without regard for an intact open read-
ing frame. GeneWise provides a gene prediction based on
protein homology, which can, in some cases, serve as a
standalone structural gene annotation. Because, as stated
earlier, protein alignments do not often model the termini
of coding regions, GeneWise predictions often lack start or
stop codons, instead providing partial gene structures that
correspond to the internal regions of the protein sequence.
Because GeneWise requires known protein sequences as
input, its utility is restricted to finding genes with pre-
viously described homologs; it is unable to predict novel
genes. GeneWise plays an essential role in the protein-
centric automated gene annotations provided by Ensembl
(Birney et al. 2004b). The Broad automated gene annota-
tion pipeline uses TBLASTN to find top protein hits first,
then uses GeneWise to generate spliced gene models from
these hits. Instead of using the GeneWise predictions as
final genome annotations, at the Broad Institute, GeneWise
results are used as evidence to be combined with other evi-
dence sources to generate consensus gene predictions, as
described further below.

In addition to GeneWise, the annotation pipeline used
at the Broad Institute also incorporates the AAT package
(Huang et al. 1997) to generate sensitive spliced protein
alignments to eukaryotic genomes. Although its rigorous
dynamic programming alignment algorithm is relatively
slow in comparison to GeneWise, we often find results
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Figure 3.

Spliced nucleotide and protein alignments infer intron structures. A section of AAT Alignments of homologous protein and

EST sequences to the Neurospora crassa gene (shown as query) for alkaline phosphatase (NCU01376). This region of the alignment
unambiguously identifies an intron within the gene structure; consensus splice sites are shown in bold.

to be especially useful where sequence similarity is low.
The multiple alignment utility included in AAT shows all
protein and transcript spliced genome alignments together,
highlighting valuable evidence for exon boundaries and
chosen splice sites (Figure 3). Other tools that gener-
ate spliced alignments of both proteins and transcripts to
the genome are exonerate (Slater and Birney 2005) and
GeneSeqer (Usuka et al. 2000).

Short peptides identified by mass spectroscopy are an
additional valuable source of evidence that enable and
augment gene finding efforts, e.g. Schizosaccharomyces
pombe (Bitton et al. 2011). While these peptide data pro-
vide strong support for the presence of a gene and the
reading frame of the gene at that location, the short peptides
derived from mass spectroscopy experiments generally
do not provide sufficient data to resolve complete gene
structures. However, confirmation that specific transcripts
are translated, particularly very small transcripts encoding
short ORFs, is invaluable. The use of proteomics data for
genome annotation is reviewed in (Ansong et al. 2008).

2.2. Ab intio gene prediction

ADb initio gene prediction programs, which solely rely on
the genome sequence under study, are an essential part
of the genome annotation process (reviewed in Brent and
Guigo (2004), Do and Choi (2006) and Zhang (2002)).
At the heart of ab initio gene predictors are statistical
models, often hidden Markov models (HMM), which are
trained to find features of genes, such as exons, splice
sites, start and stop codons, introns, and the noncoding
DNA found between genes. A generalized hidden Markov
model (GHMM) is a more complex type of HMM that can
model gene structures with intron and exon lengths tuned to
known feature length distributions. The input to such soft-
ware is simply the string of letters that defines a genome
sequence, and the output is the coordinates of gene struc-
tures predicted for that sequence. There is a wide variety
of these programs available today, including GENSCAN
(Burge and Karlin 1997), Genemark.hmm (Lukashin and
Borodovsky 1998), GlimmerHMM (Majoros et al. 2004),
FgeneSH (Salamov and Solovyev 2000), Augustus (Stanke
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and Waack 2003), geneid (Guigo 1998; Parra et al.
2000), SNAP (Korf 2004) and GeneMark.hmm-ES (Ter-
Hovhannisyan et al. 2008). The caveat to using these tools
is that most require training to find genes within a specific
genome, and benefit from validation based on comparison
to a reference (truth) gene set. Many of the gene predic-
tion programs, including Augustus, GlimmerHMM, SNAP,
and geneid, allow end users to both train and run the pro-
gram. In these cases, a critical step is the construction
of the training set composed of known gene structures
within the corresponding genome, which is used to esti-
mate the parameters for the splice junction signals, as well
as length distribution and nucleotide composition of the
exons, introns and intergenic regions.

A high-quality training set can be predicted for a new
genome based on sequence homology. Given transcriptome
sequences such those as derived from RNA-Seq, the PASA
software can extract high-confidence gene models from
full-length or near full-length reconstructed transcripts;
these can serve as an excellent starting point for construct-
ing a training set for ab initio gene predictors. In some
cases, gene sequences from a closely related species can
also be used to estimate the parameters for a gene predictor.
One way to operate is to use an iterative approach (Brejova
et al. 2009), whereby the initial gene sets are predicted with
parameters estimated using a well-curated annotation from
a distantly related species. Next, a subset of this initial pre-
diction set is selected based on support from EST data and
protein alignments and the parameters are then retrained.
Yet another method for deriving a training set is CEGMA
(Parra et al. 2007), which uses a set of 458 highly con-
served eukaryotic proteins to search for orthlogous genes
in the new genome, then uses these orthlogs to estimate the
parameters of ab initio gene predictors.

Among the currently available ab initio gene predic-
tion programs, GeneMark.hmm-ES is the only ab initio
gene predictor we are aware of that does not require
a user-generated and user-provided training set (Ter-
Hovhannisyan et al. 2008). GeneMark.hmm-ES is the
self-training version of the eukaryotic GeneMark.hmm
software, which uses the genome sequence itself as input
for an iterative process involving gene prediction and
self-training.

2.3. Comparative gene prediction

It is clear that ab intio gene finding programs and sequence
alignment utilities are both useful for finding genes.
Transcript or protein alignments, or conserved regions
found by related genome sequence comparisons, can be
used to inform a hybrid breed of gene prediction tools
that consider the intrinsic information corresponding to the
DNA sequence composition together with extrinsic infor-
mation derived from sequence homologies. In most cases,
these programs are modified versions of the existing ab

intio gene prediction programs (described above) that are
enhanced to allow sequence homology information to aug-
ment the scores of supported gene structures. For example,
GenomeScan (Yeh et al. 2001) is a version of GENSCAN
that takes into account BLASTX matches of protein
sequences to the genome and reports the most probable set
of gene structures conditioned on the regions of sequence
homology. SGP2 (Parra et al. 2003) uses TBLASTX align-
ments between genomes to augment scores of GENEID
(Guigo 1998) predictions. TWINSCAN (Korf et al. 2001)
couples a probabilistic model of sequence conservation,
based on BLASTN matches between the informant and
target genome, to the GHMM used by a reimplemented
version of GENSCAN. A later version of the ab intio
prediction program AUGUSTUS, called AUGUSTUS+
(Stanke et al. 2000), has the capacity to use externally
supplied sequence homology data as a set of hints to
guide improved gene finding accuracy. AUGUSTUS+ also
accepts manually defined hints to force certain known parts
of gene structures to be outputted when possible, which
is particularly useful in cases where sources of evidence
are conflicting and the user has advanced knowledge about
a subset of genes or structural components, such as those
supported by high quality transcript alignments.

ExonHunter (Brejova et al. 2005) employs a GHMM
similar to that of GENSCAN and AUGUSTUS but has a
mechanism to incorporate numerous sources of evidence
including protein and EST matches, homologies resulting
from pairwise genome sequence comparisons, and repeats,
into gene predictions by using what are termed advisors
specific to each evidence type. Each advisor yields a
partial probabilistic statement that is summed into a single
superadvisor probability using quadratic programming,
and then integrated with the AUGUSTUS-like GHMM.
The TWINSCAN algorithm can be implemented as a
special case of ExonHunter where only a single evidence
type is used as an informant of genome homology and a
single corresponding advisor is employed (Brejova et al.
2005). Another more recent development in gene finding is
to consider multiple genome homologies in a phylogenetic
framework. A newer and improved version of TWINSCAN
(N-SCAN a.k.a. TWINSCAN 3.0) considers homologies
to a target genome from several other different related
genomes and also their known phylogeny to accurately pre-
dict gene structures in the target genome (Gross and Brent
20006).

Another class of gene prediction tools compares two
genome sequences to predict gene structures in both
genomes by exploiting regions of conservation. The first
attempt to utilize cross-species alignments to predict genes
was performed by ROSETTA as applied to globally aligned
pairs of orthologous mouse and human genes (Batzoglou
et al. 2000). A similar approach was applied to re-
annotate the well studied genome of Saccahromyces cere-
visiae by comparison to three related sensu stricto species:
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Saccharomyces paradoxus, Saccharomyces mikatae and
Saccharomyces bayanus (Kellis et al. 2003). These four
genomes were first aligned, and then the syntenic regions
identified; reading frame conservation (RFC) was used to
evaluate whether ORF predictions were biologically pre-
served or spurious. This analysis led to the revision of
a large number of genes; conserved regions were further
mined to identify known and novel regulatory motifs. This
method was updated for the annotation of the Drosophila
(Lin et al. 2007) and Candida (Butler et al. 2009) genomes,
to include both the RFC test and a metric for conser-
vative codon substitutions (CSF, for codon substitution
frequencies).

Genome-wide conservation is also utilized by another
program, SGP-1 (Wiehe et al. 2001), which uses nucleotide
(BLASTN) or translated nucleotide (TBLASTX) align-
ments between two genomes to identify likely conserved
exons. These candidate exons are then assembled into
larger gene structures independently for both genomes.
Soon thereafter, a theoretical framework was described for
combining genome alignments and paired gene predic-
tions in a single probabilistic model called a generalized
pair HMM (GPHMM) (Pachter et al. 2002). The GPHMM
combines the paired HMM that describes sequence align-
ment with the more traditional HMM that describes gene
structures.

Gene prediction programs implementing the GPHMM
include both SLAM (Alexandersson et al. 2003) and
TWAIN (Majoros et al. 2005), the latter applied to the
fungal genomes Aspergillus nidulans and Aspergillus fumi-
gatus. One caveat in using these GPHMM-based software
tools is that they emit gene structures that require identi-
cal numbers of introns and exons for the homologous gene
pairs in the corresponding pair of genomes. This is a rea-
sonable approximation for many closely related genomes
such as between mouse and human. In theory, the GPHMM
model could be extended to allow for different numbers
of introns and exons, but this has practical ramifications
in terms of increased memory usage and computational
complexity (Majoros et al. 2005).

The most recent developments in computational gene
prediction have leveraged the framework of conditional
random fields (CRF) in place of the more traditional
GHMMs, often leveraging cross-species genome align-
ments to inform gene predictions. Examples include
Conrad (DeCaprio et al. 2007), demonstrating success in
predicting genes in the fungal genomes of Crytpococcus
neoformans and Aspergillus nidulans, outperforming com-
peting ab initio or comparative approaches. Another com-
parative CRF-based gene predictor is CONTRAST (Gross
et al. 2007), which demonstrated great success in pre-
dicting genes in the human genome by leveraging mouse
alignments exclusively or in combination with additional
vertebrate genome alignments.
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Advances in the science of ab initio and homology-
informed gene prediction over the last decade are apparent
(Brent 2008). However, not all such advanced software
tools are immediately at one’s disposal. Although several
advanced tools employing GPHMMs or CRFs have been
published with demonstrated success in areas including
fungal genomics and, although software and source code is
often made publicly available by the authors, our personal
experience is that achieving respectable performance when
applying these tools to newly targeted genomes can be an
enormous challenge. The strategy for best results in using
such tools is to collaborate with the corresponding authors
whenever possible. In contrast, we have achieved great suc-
cess leveraging the more traditional GHMM-based gene
finders as applied to diverse new fungal genomes, espe-
cially in the context of the flexible evidence combining
strategies described below.

2.4. Automated gene modeling using evidence
combiners

As a composite of gene prediction programs often pro-
duces the best gene set, additional algorithms are required
to choose the best gene structure for a given locus. Such
evidence-combining methods vary in complexity, from a
simple majority-voting scheme to more complex stochas-
tic methods as demonstrated by the linear and statistical
Combiner software tools (Allen et al. 2004), respectively.
Combiner was succeeded by JIGSAW (Allen and Salzberg
2005), software that combines diverse sources of evi-
dence into gene structures using a GHMM-like algorithm.
JIGSAW uses decision trees to weight the contribution
each evidence type makes toward each possible label for
each base (coding region, intron, start/stop codon, splice
site, etc.) then selects the labeling with the highest overall
probability. Another tool, GAZE (Howe et al. 2002), pro-
vides a general framework to assemble an optimal set of
gene structures given a user-supplied feature set, scoring
scheme, and model for how to build a gene structure.

The EVidenceModeler (EVM) (Haas et al. 2008) soft-
ware generates a set of weighted consensus gene structures
from ab initio gene predictions and protein and transcript
alignments. EVM provides a flexible and intuitive frame-
work for combining diverse evidence types into a single
automated gene structure annotation system. Inputs to
EVM include the genome sequence, sets of gene predic-
tions produced by different gene-calling programs, protein
and transcript sequence spliced alignments, and a list of
numerical weight values to be applied to each type of
evidence.

Maker (Cantarel et al. 2008) is another “combiner”
annotation package. Maker combines ab initio gene pre-
dictions (SNAP, Augustus, FgeneSH and GeneMark.hmm),
EST alignments (via Exonerate and Blastn), protein
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alignments (exonerate and BLASTX) and repeats from
RepeatMasker and Maker’s own internal RepeatRunner,
synthesizes the input data into gene annotations, and tracks
the evidence used in the process of gene model selection.

Evidence-combining methods to automate gene predic-
tion have been shown to excel in comparison to both the
ab initio and dual-genome gene finders (Guigo et al. 2006),
(Haas et al. 2008). The ultimate goal is to reach a level of
accuracy that meets or exceeds that of the human annota-
tor, so that quality genome annotation can be generated at
a rate that can keep pace with DNA sequencing. A flexible
evidence combiner that is easily tuned to a wide array of
evidence sources is an essential component of eukaryotic
annotation efforts.

2.5. Manually modeling genes using a genome
annotation editor

Manual evaluation of the data underlying a gene call is
important in cases where data conflict or are otherwise
sparse in support, and can be used to fix the more obvi-
ous errors. Genome annotation projects typically generate
data such as cDNA sequences to assist in the gene find-
ing effort, which almost always utilizes several different
ab initio gene prediction programs, along with protein and
transcript alignments. After an automatic gene set is built,
the homologous protein and transcript alignments can help
manual annotators to identify the regions where compo-
nents of genes were predicted incorrectly, such as where
the true gene structures were incorrectly split or merged as
predicted, or in the simpler cases, identifying missed exons,
wrong start or stop codons, or incorrect splice sites.
Although many genome browsers exist, such as the
UCSC genome browser or Gbrowse, most focus on data
viewing capabilities while comparatively few provide func-
tionality that allows one to edit annotations. Genome
browsers that also act as annotation editors include ARGO
(Engels 2003-2011), GenomeView (Abeel 2006-2011),
Apollo (Lewis et al. 2002) and Artemis (Rutherford et al.
2000). Figure 4 shows an example view provided by
ARGO, which illustrates the many sources of evidence
that can be used by an annotator in the process of man-
ual gene structure curation. The editor allows the user to
model new genes, delete unsupported genes, and modify
intron and exon boundaries as needed. Such manual editing
is hugely time-consuming and also imperfect, but still con-
sidered the most trusted mechanism to annotate a genome
to the highest quality. Owing to the need for annotations
of the highest quality, a method for manual inspection and
approval has been applied to all fungal genomes previously
sequenced and annotated at the Broad Institute. Similar
approaches have been applied to other genomes considered
to be of the greatest importance to biological and medical
science, including human and other vertebrates (Ashurst
et al. 2005), Arabidopsis (Haas et al. 2005; Wortman et al.

2003), C. elegans (Schwarz et al. 2006), and Drosophila
(Misra et al. 2002).

2.6. Comparative genomics as an annotation
refinement tool

Subsequent to the initial gene structure annotations to a
series of related complete genomes, more detailed com-
parisons between orthologous genes can yield insights that
can significantly improve upon the quality of annotation
after refinement, as was shown in the annotation evaluation
and refinement of three Saccharomyces cerevisiae (Kellis
et al. 2003) and Candida albicans genomes (Butler et al.
2009).

One strategy for examining orthologs as a focal point
towards improved gene structure curations is exemplified
by the Sybil web-based software (http://sybil.sf.net) for
comparative genomics. Sybil’s interface illustrates com-
puted ortholog clusters in their genomic context; for more
closely related genomes, orthologs are often found within
large regions of synteny. Statistical summaries highlight
ortholog clusters that are missing members, or with lower-
than-expected alignment coverage or similarity, suggest-
ing potential annotation inaccuracies that may need to
be addressed. For example, closely related orthologs that
vary substantially in their exon numbers, protein lengths,
or intron lengths may indicate inaccurate, inconsistent
gene predictions. An example Sybil comparative view
of gene structure annotations across a syntenic region
of Aspergillus species is provided in Figure 5. Split or
merged gene predictions are easily discerned in the display.
‘Missing’ genes manifest within syntenic regions as gaping
holes arranged against orphaned (ortholog-lacking) genes.
Upon more thorough inspection of the data in a genome
annotation editor (as described above), the splits, merges,
and recovery of such missed genes can be achieved.

2.7. Annotation of fungal genomes with few spliced
genes

Fungal genomes vary in the proportion of spliced genes,
ranging from 0.7 to 97% (Ivashchenko et al. 2009). For
example, only about 5% of genes are spliced in S. cere-
visiae and the Candida species (Rossignol et al. 2008;
Mitrovich et al. 2007), and <1% for E. cuniculi and other
Microsporidia species (Katinka et al. 2001). For genomes
with few spliced genes, the gene structures are more simi-
lar to those of the prokaryotes, except for the comparatively
rare spliced genes. In these cases, we may leverage the
prokaryotic ab initio gene predictors that target single-exon
genes including Prodigal (Hyatt et al. 2010), GeneMark,
and Glimmer. The remaining intron-containing genes can
be identified by spliced protein and transcript alignments;
some of these have a small initial exon that can be diffi-
cult to accurately predict. In such cases, transcript evidence
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is invaluable, and where high-quality transcript alignment encode very short products ~22 nt in length, that generally
evidence supports the existence of introns, PASA is often act to downregulate the expression of specific gene tar-
able to automatically incorporate the intron into the exist- gets (reviewed in He and Hannon (2004) and Nelson et al.
ing Prodigal or other single-exon prediction. Using this (2003)). Similarly, small interfering RNA (siRNA) also
approach, manual refinement can be targeted to the more play important roles in some fungal species. For example,
complex gene structure modifications required. siRNA in S. pombe are involved in heterochromatin assem-

bly at centromeres (Grewal 2010; Lejeune et al. 2011). For
a review of other short non-coding RNA genes, see Lee

2.8. Annotation of non-coding RNA genes et al. (2009).

Some RNA molecules do not encode proteins, but instead Computational methods used to locate ncRNA
serve as the final functional products with enzymatic genes are substantially different than those for find-
and/or structural roles in essential and ancient biomolec- ing protein-coding genes (reviewed in Eddy (2002a)).
ular processes (reviewed in Eddy (2001) and Szymanski Since protein-coding genes are encoded by non-random
et al. (2003)). Major classes of non-coding RNA (ncRNA) combinations of codons, the code can be recognized
genes are involved in several essential biomolecular and deciphered as a translatable sequence with statistical
or biochemical processes including transcription, post- properties consistent with known protein-coding genes.
transcriptonal mRNA processing, and translation. Well The information stored in ncRNA genes has no such
known examples of ncRNAs include ribosomal RNAs codon structure, but instead can be recognized in the form
(rRNA) involved as structural and functional components of base-paired secondary structures consistent with the
of ribosomes, transfer RNAs (tRNA) used to decode the sequences and structures of known classes of structured
mRNA to form proteins, the small nuclear RNAs (snRNA) ncRNA genes. The sequence and secondary structure for
involved in pre-mRNA splicing of introns, and the small known classes of ncRNAs can be captured in a statistical
nucleolar RNAs (snoRNA) that guide biochemical modi- models called profile stochastic context-free grammars

fications to other RNA genes. Another class of seemingly (SCFGs) (Eddy 2002a, Eddy and Durbin 1994, Lowe and
ubiquitous RNA genes termed microRNAs (miRNA) has Eddy 1997). An essential ncRNA gene-finding resource
been more recently discovered. These microRNA genes is provided by Rfam (Griffiths-Jones et al. 2003, 2005),
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alkaline phosphatase (NCU01376) in the ARGO genome annotation editor. Evidence consists of, from top to bottom, Augustus, geneid,
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final annotated gene model for this locus. The intron boundaries that agree with the annotated gene model are highlighted as pink vertical
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FgeneSH, SNAP, and GENEMARK .hmm all perfectly agree on the structure of this gene, whereas Geneld and GLIMMERHMM propose
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The Sybil Comparative Genomics Interface. A short region of synteny among orthologous genes of Aspergillus and related

genomes is shown within the Sybil interface. Similarities and differences among the annotated gene structures become readily apparent,
and many differences are found to represent artifacts rather than true evolutionary differences among related genes. Examples of the most
striking discrepancies among annotated gene structures, involving different numbers of exons, or intron and exon lengths are highlighted

by red rectangles.

which includes profile SCFGs for classes of ncRNAs that
span the tree of life and the INFERNAL software (Eddy
2002b) to search genome sequences with profile SCFGs to
discover new members of known families. A search with a
profile SCFG is computationally very expensive and thus
slow, so in order to quicken the pace of the analysis, a blast
heuristic is employed wherein the slower SCFG search
is focused on a genomic region that first demonstrates
BLAST-visible sequence similarity to a known member
of the ncRNA family (Griffiths-Jones et al. 2003). Also,
the computational complexity of the profile SCFG search
imposes constraints on the size of the model such that
modeling complete small subunit or large subunit rRNAs
completely is impractical. Instead, a compromise was to
model 5" domains of the larger subunits (18S and 28S).
Rfam and INFERNAL provide an essential resource
for annotating tRNAs, snRNAs, snoRNAs, and other
short ncRNAs with conserved sequences and secondary
structures.

Larger rRNA sequences can often be annotated using
BLAST against homologous rRNA genes. For example,
the SILVA rRNA database project which has compiled a
large collection of 5S, SSU and LSU rRNA sequences
(Pruesse et al. 2007). However, in the case of newly
sequenced fungi found to be distantly related from species
represented by current rRNA sequence collections, low
sequence similarity may prevent identification of rRNA
sequences via BLAST. RNAmmer (Lagesen et al. 2007)

identifies eukaryotic 5S, 18S and 28S ribosomal RNA
genes with profile HMM models, and it has been used
in the analysis of numerous fungal genomes. RNAmmer
is generally more sensitive than BLAST, but has limita-
tions; RNAmmer does not identify 5.8S rRNA sequences
or rRNA genes in mitochondrial genomes. Furthermore,
for draft genome assemblies, RNAmmer could fail to iden-
tify a rRNA gene if the 5" end of the rRNA gene is missing
from the assembled genome sequence, due to a heuristic
employed within RNAmmer enabling runtime performance
gains. Since searching large genome sequences with full-
length 18S and 28S HMM profiles is computationally
very expensive, RNAmmer first uses “spotter HMMs” con-
structed from the most highly conserved 18S and 28S
rRNA segments to find the “seed” location of the rRNA
genes, and only then uses the full-length HMMs to analyze
the expanded regions around the seed location to define the
boundary of the complete rRNA genes. In summary, RFAM
is effective in identifying 5.8S rRNA genes, in addition to
full-length 5S rRNA and the 5" domain of the 18S and 28S
rRNA. Thus, RNAmmer, RFAM and BLAST can comple-
ment each other, and the best rRNA gene predictions are
achieved using a combined approach.

3. Repeats and transposable elements

Several attributes of repetitive sequences underscore their
importance in eukaryotic genome annotation. Repeats are
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in many cases interesting sequences of great functional
importance in their own right (reviewed in Shapiro and
von Sternberg (2005)). For example, the 5- to 7-mer
tandem telomeric repeats protect the ends of linear chro-
mosomes, and the ~180-bp tandem repeat units found
at plant and animal centromeres have been implicated in
kinetochore formation. These tandem repeats form a class
of repeats termed satellite sequences. Simple sequence
repeats (SSRs) identified by tools such as MISA (http://
pgrc.ipk-gatersleben.de/misa/download/misa.pl) are often
used as genetic markers, and vary in abundance in differ-
ent fungal genomes. Another class of repeats is formed by
mobile DNA elements, including transposons, retrotrans-
posons, MITEs, and SINEs (reviewed in Kazazian (2004),
and numerous references for MITEs provided in Yang
and Hall (2003)). Although these elements may sometimes
cluster in specific regions of the genome, their distribution
is often quite broad in large eukaryotic genomes, and they
are sometimes found inserted within introns of genes and
at gene termini. Unlike MITEs and SINEs, which are non-
coding, transposons and retrotransposons encode genes for
the proteins including transposases, integrases, and reverse
transcriptases, which function to ensure their mobility. The
DNA encoding these proteins is easily mistaken by ab initio
gene prediction software as complete or fragmented host
genes, falsely inflating the number of host gene predictions
and occasionally resulting in gene predictions that are, in
fact, chimeras between host genes and mobile elements.
A solution to this problem is to first identify these repeat
features and then conceal them from gene-finding software.
A common mechanism used to mask these DNA regions
is to replace the nucleotide characters of these sequences
deemed repetitive with ‘N’s.

Repeat sequence and transposable element content
varies widely among different fungal species. For exam-
ple, transposable elements account for 64% of the 103-Mb
genome of barley powdery mildew, Blumeria graminis f.sp.
hordei (Spanu et al. 2010), while other fungal genomes
sequenced thus far have been found to harbor much smaller
numbers but exhibiting considerable diversity of transpos-
able elements. A wide variety of tools is available for the
identification of sequence repeats and transposable ele-
ments (see review by Lerat (2010)). In the simplest case,
the repeat sequence content of a genome could be estimated
by genome self-alignment via BLAST or CrossMatch (see
protocol in Tarailo-Graovac and Chen (2009)), as in exam-
ples of Coccidioides genomes (Sharpton et al. 2009),
Rhizopus oryzae (Ma et al. 2009) and Fusarium oxysporum
genomes (Ma et al. 2010).

To characterize the types of transposable elements in a
fungal genome, additional tools and analyses are needed.
For example, TransposonPSI (http://transposonpsi.sf.net)
identifies and classifies repetitive protein or nucleic acid
sequences based on homology to proteins encoded by
diverse families of transposable elements. TransposonPSI
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uses PSI-Blast (Altschul et al. 1997) with a collection
of (retro-) transposon ORF homology profiles to identify
statistically significant alignments. This method can be
used both to identify potential transposon ORFs within
a set of predicted genes, and to identify regions of
transposon homology within a larger genome sequence.
TransposonPSI is particularly useful to identify degenerate
transposon homologies within genome sequences that,
due to their sequence divergence, successfully escape
identification and masking by using RepeatMasker and
an associated nucleotide library of repetitive elements.
TransposonPSI has been routinely used to assist in the
discovery of mobile elements across multiple fungal
species and other eukaryotes including protozoa, plants
and animals.

The RepeatMasker software (Smit 1996-2004) is used
to identify regions of the genome with substantial sequence
similarity to a repeat element in a library of known repeat
sequences. Libraries of repeat family consensus sequences
are provided by RepBase (Jurka et al. 2005, Jurka 2000)
and these can be used with RepeatMasker to find and
mask similar elements in raw genomic sequences. Once
the repeat elements are identified, a BLAST (Altschul
et al. 1990) search against RepBase could provide partial
characterization of the repeat elements, as in the exam-
ples of Coccidioides genomes (Sharpton et al. 2009).
The RepBase libraries are organism-specific and, although
these are of fantastic utility if your genome of interest is
represented, these libraries have limited application in the
context of previously uncharacterized genomes, if these
genomes are not sufficiently similar to the previously char-
acterized genomes. Novel genome sequences must first be
mined for repetitive elements in order to generate a corre-
sponding repeat library containing such sequences. There
are additional tools that provide for such de novo repeat
library construction, including RepeatScout (Price et al.
2005), PILER (Edgar and Myers 2005), and RECON (Bao
and Eddy 2002). A subset of the repeats reported by these
programs may be found to be extraordinarily abundant,
and to more likely represent mobile elements and noncod-
ing repeats than they are to correspond to protein-coding
host genes, and these can be used as a companion library
to RepeatMasker to mask the genome in preparation for a
more focused gene finding exercise. More recent efforts in
repeat-finding attempt to combine and integrate multiple
tools into a single package, since it has been noted that dif-
ferent repeat finders seem to complement each other. For
example, the “RepeatModeler” package (Smit and Hubley)
combines RepeatMasker, RECON, RepeatScout and TRF
(Benson 1999) for repeat identification and classification.
The “REPET” package (Flutre et al. 2010) combines the
functionalities of two modules (TEdenovo and TEannot)
and uses BLASTER for self-alignment, GROUPER and
RECON for identification and comparison with RepBase
for classification.
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4. Pseudogenes

A persistent difficulty in genome annotation is distinguish-
ing functional protein-coding genes from pseudogenes,
their defunct counterparts. Pseudogenes arise in genome
evolution via several mechanisms, the most predominant
mechanisms being gene duplication followed by degen-
eration of one of the duplicated copies, and retrotrans
sposition — by which processed (intron-free) transcripts of
functional genes are reverse transcribed and inserted into
the genome, presumably accidentally by the machinery of
active retrotransposons (reviewed in Mighell et al. (2000);
also visit http://www.pseudogene.org). Additionally, over
the course of evolution and changing selective pressures,
genes once important for some biological function may
no longer be required and are free to accumulate muta-
tions and degenerate over time. Today, we recognize the
signatures of the remaining gene features as “genomic fos-
sils”, remnants of the past retained, still recognizable in the
sequence of the DNA, yet no longer coding for proteins.

Pseudogenes tend to have properties that facilitate their
identification (nicely summarized in Zhang and Gerstein
(2004)); most tools rely on a comparison to a known func-
tional homolog from which the candidate pseudogene was
presumed to have been derived. The most recognizable
property of a pseudogene is that its gene structure is inter-
rupted by frameshifts and/or intervening in-frame stop
codons. Degenerated pseudogenes will often have acquired
numerous frameshifts and intervening stop codons, which
in all likelihood preclude the translation of a functional
polypeptide. In cases where a single DNA sequence aber-
ration exists that would be suggestive of a pseudogene, it
might be the result of a DNA sequencing error instead of
a mutation. In certain cases, such suspicious regions of
genome sequences are closely examined and potentially
targeted for resequencing to confirm the sequence quality
before a pseudogene is predicted.

Additional reasons for suspecting a pseudogene derive
from other characteristics presumed to disable gene
function. A truncated form a full-length gene elsewhere in
the genome may be presumed nonfunctional. Similarly, a
gene missing a start codon or required regulatory sequence
might be flagged as a candidate pseudogene. Retroposed
pseudogenes are perhaps the most readily identified; these
genes are reminiscent of the parental gene’s fully processed
mRNA, lacking introns and having a string of adenines at
the 3’ end. They also may have characteristics of mobile
element-mediated genome insertion, such as having short
direct repeats in the flanking sequence.

The identification and annotation of pseudogenes cur-
rently relies heavily on homology to known genes. Most
DNA sequence-based ab initio gene prediction tools model
coding and noncoding sequences, but do not model degen-
erate pseudogenes. Since pseudogenes have detectable
remnants of their earlier protein-coding potential, which
makes their identification possible, this remaining coding

signal may be detected by gene prediction software, and
bizarre and entirely bogus predictions are often the result.
Gene models are sometimes predicted with an inflated
number of introns that are introduced to sidestep the
frameshifts and intervening stop codons that preclude any
proper gene modeling.

Many pseudogenes are so degenerate that their iden-
tification and deduction as a pseudogene is obvious to the
annotator. Other cases may not be so obvious. For example,
disruption of an important regulatory sequence (promoter,
transcription factor binding site, splicing enhancer, etc.)
by a recent transposon insertion or non-consensus splice
sites may render a gene nonfunctional. Given comparative
genomic sequence, a statistical test can be used to deter-
mine if the gene remains under selective pressure (positive
or negative), or if it appears to be evolving at a neu-
tral rate (randomly). Pseudogenes are mostly expected to
be defunct and not under selective pressure, so in most
cases we would expect them to be evolving neutrally. The
Ka/Ks test describes the evolution of the coding sequence
by measuring the rate of substitution at synonymous and
non-synonymous codon positions (Li 1997). A neutrally
evolving sequence such as a pseudogene (which by def-
inition is not evolving under any selective pressure at
all) would acquire synonymous substitutions at the same
rate as nonsynonymous substitutions, and hence have a
Ka/Ks value that approximates the value of one (Li et al.
1981).

PPFINDER (van Baren and Brent 2006) is a tool that
exploits two characteristics of processed pseudogenes to
first identify and then exclude them from subsequent gene-
finding efforts using the N-SCAN gene prediction program.
The characteristics of retroposed pseudogenes sought by
PPFINDER include the loss of introns and the lack of
detectable homology within a significantly diverged related
genome. The system works as follows. An intron loca-
tion method is employed that involves finding sequence
homology among gene predictions output from an initial
N-SCAN execution. The genome sequence of the candidate
pseudogene is aligned to the genome sequence of the ten-
tative parental gene and, if the candidate pseudogene is
aligned with gaps that coincide with predicted introns, then
that model is flagged. A second method based on con-
served synteny involves analyzing the syntenic region of a
related genome for homology to the candidate pseudogene;
recently occurring processed pseudogenes are expected to
lack conserved synteny as compared to the parental genes
from which the processed pseudogenes were derived.

The processed pseudogenes found by PPFINDER are
restricted to only those genes that are initially predicted by
N-SCAN; hence the caveat, genes that are not predicted
by N-SCAN remain undetected by this process. Even so,
PPFINDER represents the first publicly available software
tool that effectively predicts pseudogenes, and is the first
effort to include pseudogene detection and exclusion as a
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direct component of the automated gene finding process.
A more general, standalone pipeline for pseudogene detec-
tion is provided by PseudoPipe (Zhang et al. 2006), which
relies on BLAST to correlate candidate pseudogenes with
their homologous parental genes and, subsequently, clas-
sifies pseudogenes as retroposed, duplicated or fragments.
Over time, we expect to see more of these types of soft-
ware tools and methods being developed, and integrated at
various stages of the genome annotation pipeline, either
as a component of the initial gene finding strategy as
in PPFINDER, or as a subsequent quality-control step
to interrogate gene models output from a larger annota-
tion pipeline, flagging candidate pseudogenes for further
evaluation.

5. Annotation of mitochondrial genomes

Fungal mitochondrial genomes show great diversity in
the genome size, number of genes and genome archi-
tecture. For example, the S. pombe mitochondrion con-
tains only 19,431 bases with 10 protein-coding genes,
while Podospora anserina mitochondrion is about 100 kb
with 50 protein-coding genes (Cummings et al. 1990)
and Moniliophthora perniciosa genome is even larger at
109 kb, but only has 14 protein-coding genes (Formighieri
et al. 2008). This is largely consistent with observations
in eukaryote mitochondrial genomes, where the number
of protein-coding genes range from 3 to 67 (Adams and
Palmer 2003). In addition, fungal mitochondrial genome
architectures are also diverse. Most fungal mitochon-
drial genomes form a single circle, as in Stagonospora
nodorum (Hane et al. 2007), Aspergillus niger (Juhasz
et al. 2008), several dermatophytes (Wu et al. 2009),
and Paracoccidioides brasiliensis (Cardoso et al. 2007).
However, exceptions exist, such as the Spizellomyces punc-
tatus mitochondrial genome, which consists of three cir-
cular chromosomes (58.8, 1.4 and 1.1 kb) with 31, 1, and
0 protein-coding genes (Forget et al. 2002). A compar-
ative study of multiple Candida mitochondrial genomes
suggests that these are all linear genomes with telom-
eres, sometimes with multiple chromosomes (Valach et al.
2011). Incidentally, in the extreme case of Diplonema
papillatum (which is not a fungus), the mitochondrion con-
sists of multipartite (“segmented”) genomes with numer-
ous circular chromosomes, where 10 of the 11 recognizable
protein-coding genes are split among 3—12 chromosomes
(Vlcek et al. 2011).

Annotation of mitochondrial genomes has unique chal-
lenges, since the mitochondrial and nuclear genomes
have very different nucleotide composition and use
different codon translation tables (NCBI Translation
Table 4, see http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/
wprintgc.cgi ). For example, the nuclear stop-codon UGA
is translated as a tryptophan or leucine. In a subset
of Candida species, all cytoplasmic CUG codons are
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translated as a serine instead of leucine (Massey et al.
2003). Mitochondrial genomes can use alternative start
codons, such as AUU, AUA and UUA. Due to the small
genome size, most ab initio gene predictors cannot be
readily trained to work on the mitochondrion. As a result,
most gene prediction programs developed for the annota-
tion of the nuclear genome cannot be used effectively for
the annotation of mitochondrial genomes.

Fungal mitochondrial genomes generally contain a
standard set of 14 or 15 conserved protein-coding genes.
These include the ATP synthase subunits (atp6, atp8,
atp9), apocytochrome b (cob), cytochrome oxidase sub-
units (coxl, cox2, cox3), NADH dehydrogenase subunits
(nadl, nad2, nad3, nad4, nad4L, nad5 and nad6), and the
rps5 ribosomal protein in some fungal species (Cardoso,
Tambor and Nobrega 2007, Woo et al. 2003; Torriani et al.
2008; Valach et al. 2011, Vicek et al. 2011). Most of these
protein-coding genes are transcribed from the same DNA
strand. For single-circle mitochondrial genomes, the stan-
dard is to break the circle at a consistent location, generally
after cox2 (Cardoso et al. 2007, Woo et al. 2003). This
provides to compare gene content and gene order among
mitochondrial genomes from different fungal species. For
closely related species, gene order can be very similar, as
was the case with Penicillium marneffei and Aspergillus
nidulans, where the order of protein-coding genes is con-
served for all protein-coding genes except azp9 (Woo et al.
2003). However, gene order and orientation in Candida
species appears less well conserved (Valach et al. 2011).
The high conservation of mitochondrial protein-coding
genes greatly facilitates mitochondrial genome annotation,
most of which can be readily identified using a combi-
nation of BLAST, GeneWise, and Pfam domain analysis.
Additional gene candidates can be identified by exploring
long ORFs using the proper codon translation table. Finally,
gene annotations are manually refined using a genome
annotation editor.

Fungal mitochondrions also contain non-coding RNA
genes. The mitochondrial TRNA genes are single copy
genes for the large and small ribosomal RNAs (77 and rrs).
These are significantly shorter than their counterpart in the
nuclear genome and cannot be identified by RNAmmer
(Lagesen et al. 2007). Instead, they are identified by a com-
bination of RFAM and BLASTN against a rRNA database.
This approach has been used for the annotation of multiple
fungal mitochondrial genomes, such as Cryptococcus gattii
R265 (D’Souza et al. 2011). Most fungal species contain
tRNAs for all 20 amino acids. In some fungal mitochon-
drial genomes that appear be deficient in tRNA content, it
is likely that these “absent” tRNAs are nuclear encoded and
later imported into the mitochondrion (Forget et al. 2002).
tRNA genes can be identified with tRNAScan using the
organelle option and the sensitive mode (Lowe and Eddy
1997). The fungal mitochondrial tRNA genes tend to form
clusters, often around the rRNA genes (rn/ and rns), but the
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clusters can also be dispersed throughout the mitochondrial
genome. The order of tRNA genes is largely conserved
among closely related fungal species (Cardoso et al. 2007,
Woo et al. 2003, Torriani et al. 2008).

6. Projecting reference genome annotations

There are often instances where reference genome anno-
tations must be propagated from one genome assembly to
another. For example, many fungal species have multiple
sequentially improved assemblies generated over a period
of time, sometimes involving several years, as in the case
of Neurospora crassa (http://www.broadinstitute.org/anno
tation/genome/neurospora/MultiHome.html). Gene struc-
tures are projected from earlier assemblies to the lat-
est assemblies, keeping track of the gene identifiers
(“locus tags”) and other annotation attributes across
each new assembly release. Another example involves
leveraging a reference genome annotation for annotat-
ing a newly sequenced genome of a related species,
e.g. from the highly curated Schizosaccharomyces pombe
to the newly sequenced Schizosaccharomyces octosporus
genome (Rhind et al. 2011), or between strains of C. gattii
(D’Souza et al. 2011). For this purpose, we developed
an alignment-based gene mapping strategy at the Broad
Institute and used this strategy for mapping genes in
all updated genome assemblies since 2005. In our gene
mapping strategy, we first align the two genomes using
NUCmer (Delcher et al. 2002) to establish base-to-base
mapping between the two assemblies, and then use this info
to project the gene coordinates from the reference genome
to the target genome. A similar strategy is used in the RATT
tool published recently (Otto et al. 2011).

7. Functional annotation

Once the gene structural annotation phase is completed for
a fungal genome, the focus shifts to the functional annota-
tion of the gene set. The purpose is to assign gene product
names largely based on in silico functional characterization
of the genes.

For gene product naming, we follow the GenBank
naming guidelines (http://www.ncbi.nlm.nih.gov/genbank/
genomesubmit_annotation.html#CDS), and assign gene
product names according the SwissProt naming conven-
tions (http://www.uniprot.org/docs/proknameprot). Speci-
fically, we first assign gene product names via BLAST
hits to SwissProt database with manually curated gene
product names, using stringent criteria (>70% protein
sequence identity, >70% coverage of both the query and
the database hit sequence, and length difference <10%).
For the remaining genes with unassigned product names,
we then use HMMER equivalogs (related proteins with pre-
sumed equivalent functions) from TIGRfam (Haft et al.
2003) and Pfam (Finn et al. 2010) hits to assign the name

based on the HMMER hits, if the hit score is above the
trusted cutoff value. This usually results in name assign-
ment for 10-30% of genes. Since our naming standards
require high identity, genomes corresponding to newly
sequenced clades of the fungal phylogeny often have
fewer genes that are assigned meaningful names based on
sequence homology to known proteins.

Additional functional characterizations include assign-
ing Gene Ontology identifiers (via pfam2go (http://
www.geneontology.org/external2go/pfam2go) and blast2
go (Conesa et al. 2005)), enzyme commission codes (EC
numbers), KEGG-pathway membership, KOG-homology
(Tatusov et al. 2003), protein domains (Pfam and
TIGRfam), secretion signals (Choi, 2010), and transmem-
brane domains (Krogh et al. 2001). Of particular interest
to fungal genomes is the analysis of specialized function
categories, including protein kinases (Manning et al. 2002,
Stajich et al. 2010), histidine kinases (Nemecek et al. 2006,
2007), carbohydrate-activating enzymes (CAZy) (Cantarel
et al. 2009), GPI-anchored proteins (PredGPI) (Pierleoni
et al. 2008), transporters (Coleman and Mylonakis 2009),
GPCR (Xue et al. 2008), secreted proteins (signalP)
(Emanuelsson et al. 2007) and effectors (Stergiopoulos
and de Wit 2009), other candidate pathogenicity factors
(PHI-base), secondary metabolite gene clusters (SMURF)
(including PKS, NRPS, etc.) (Khaldi et al. 2010), pro-
teases (Merops peptidase database; Rawlings et al. (2004)),
and transcription factors (via SUPERFAMILY, (Shelest
(2008)). Taken together, the general function profiles and
the specialized function profiles provide a comprehensive
overview of the biochemical characteristics of a genome,
which can be correlated with the biological phenotypes of
a fungal species.

8. The Broad Institute fungal/eukaryotic genome
annotation pipeline

A production genome annotation system ties many of the
above genome and gene annotation tasks into a set of
components of a larger pipeline. The general annotation
pipeline applied to most eukaryotic genomes annotated by
the Broad Institute is shown in Figure 6. The tools and pro-
cesses we describe are those that we have found to be most
reliable and effective in a production genome annotation
environment and represent a subset of the tools described
within the earlier sections.

The input to the pipeline is a set of sequences pro-
vided as a multi-FASTA file. The first stage of the pipeline
involves decorating the genome with primary evidence
to be leveraged for downstream annotation efforts, col-
lecting data based on analysis of the genome sequence
alone or in combination with general sequence resources.
The self-training GeneMark-ES is run to identify an ini-
tial set of ab initio predictions, since no prior training
is required. Regions of the genome with homology to
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Figure 6. The Broad Institute Eukaryotic Genome Annotation Pipeline. Genome sequences are annotated by leveraging multiple sources
of evidence for genes, including ab initio gene predictions, protein and transcript alignments, all of which are distilled into a consensus
gene set. Gene products are named based on homology to proteins or domains of known function, manually refined, and ultimately released

to public databases.

known protein sequences are identified by TBLASTN
of the genome sequences against the UniRef90 non-
redundant protein dataset. Regions shown to have homol-
ogy to known proteins are subject to subsequent gene

modeling using GeneWise. Any available RNA-Seq data
is processed using our hybrid genome-guided transcript
reconstruction method described earlier (and illustrated in
Figure 2).
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Repeats are identified using several methods. A
genome-specific repeat library is generated using
RepeatScout, which is then searched against the
genome using RepeatMasker. In addition, we lever-
age TransposonPSI to identify genomic regions with
detectable sequence homology to known families of
transposable element proteins. We also search the genome
assembly against a custom fungal repeat protein database
of sequences collected from repbase and fungal genome
projects to identify regions with homology to known repeat
proteins.

This initial round of data collection can identify a set
of high quality gene structures to be used for training
additional ab initio gene predictors, including Augustus,
GlimmerHMM, and SNAP. High quality reference gene
structures are extracted from two sources: genes recon-
structed from transcript data (e.g. RNA-Seq), and those
complete GeneMark-ES predictions that appear to be of
high quality and supported by transcript and protein align-
ments. This process is detailed below.

ESTs and FL-cDNAs, and now RNA-Seq data, are the
single best resource available at the earliest stage of char-
acterizing a new genome, particularly when no other highly
similar genome sequence exists. Complete and partial gene
structures based on spliced transcript sequence alignment
data are used as inputs to train gene-finding software. This
is mediated in part by components of the PASA software
(Haas et al. 2003). To automatically generate a training
set, the longest ORF is located within each PASA tran-
script alignment assembly, and those complete and partial
OREFs that exceed a specified length (e.g. >300 nt) and that
appear to have strong coding potential are output for gene-
finder training. We find that by aligning transcripts to the
unmasked genome instead of a repeat-masked genome, we
obtain more robust transcript alignments; since many UTR
regions tend to extend into the beginnings of repetitive
regions, it is important to retain the repeats to allow the
alignments to extend completely. Furthermore, GMAP has
an option to report only the single best alignment for
each transcript, so we need not examine copious amounts
of output that would normally be associated with repeat-
matching transcripts, which makes the unmasked genome
a feasible choice of alignment target.

Second, the subset of GeneMark-ES predictions that
have structures consistent with transcript alignments
and GeneWise predictions are extracted to further sup-
plement the training set. Predicted proteins found to
exhibit homology to known repeats (ascertained by using
TransposonPSI) are excluded from this gene collection.
With this set of trusted genes, we train the ab initio
gene prediction programs including Augustus (Stanke and
Waack 2003), geneid (Parra et al. 2000), Fgenesh (Salamov
and Solovyev 2000), GlimmerHMM (Majoros et al. 2004),
SNAP (Korf2004), in addition to re-training GeneMarkES

(Lukashin and Borodovsky 1998) that was initially run in
the self-training mode.

In the next phase, the ab initio gene predictions,
the high-quality reference gene models, PASA align-
ment assemblies, protein and cross-species transcript
alignments, and GeneWise predictions are then com-
bined into consensus gene structure annotations using
EVidenceModeler (Haas et al. 2008). PASA is then used
to further update these annotations based on the high-
quality transcript alignments, primarily adding UTRs and
modeling alternative splicing isoforms.

The product of the pipeline thus far corresponds to
the final output of an automated protein-coding gene dis-
covery pipeline. Our noncoding RNA gene-finding relies
almost exclusively on INFERNAL (Eddy 2002b) and Rfam
(Griffiths-Jones et al. 2003, Griffiths-Jones et al. 2005),
RNAmmer (Lagesen et al. 2007) and tRNAScan (Lowe
and Eddy 1997). The small and large subunit rDNAs are
located and annotated by aligning representative sequence
entries.

We next filter the candidate gene set to remove spurious
genes from repeat sequences and transposable elements.
Specifically, we filter out genes with substantial over-
lap to RepeatScout, blast hits to known fungal transpo-
son proteins, Pfam domains corresponding to regions of
known transposable element proteins, and Transposon-PSI
matches. We also inspect those coding sequences with
multiple hits (>10) to different parts of the assembly at
>90% identity, which may represent previously undiscov-
ered repetitive elements rather than host coding sequences.
We also check for genes with similarity to other repeats
based on assigned gene product names and remove short
proteins with low complexity and having insufficient sup-
porting evidence (e.g. non-repeat Pfam domains, ESTs,
RNA-Seq). After filtering, the resulting feature set is then
ready for targeted manual review.

Manual review of genome annotations at the Broad
Institute consists of a team of bioinformaticists examining
genes flagged as suspicious and most likely to benefit from
manual inspection. Such targeted genes include those with
long introns, very short ORFs, those ORFs that have only
partial sequence homology to known proteins and perhaps
represent gene fragments, and those genes that potentially
represent merged or split gene products based on the range
of protein sequence homologies across the lengths of the
genes. Annotators inspect these genes using our ARGO
genome browser (shown in Figure 4), which brings all evi-
dence and features into a single view, to allow review of the
gene structures and manual edits if warranted.

Once the gene set is finalized, the genes are numbered
using the locus tags assigned to the genome (a unique locus
prefix is provided by NCBI for each genome). The gene
product names are assigned by BLAST against SwissProt
or by HMMER against TIGRfam equivalogs. The rest



Downloaded by [Brian Haas| at 07:24 23 September 2011

of the genes are assigned the name ‘“hypothetical pro-
tein” according to the current GenBank guidelines. Finally,
genome annotations are released on the Broad website and
submitted to GenBank.

9. Access to fungal genome annotations

The worldwide destinations for all biological sequence data
include GenBank (Benson et al. 2005) in the United States
of America, the European Molecular Biology Laboratory
(EMBL) (Kanz et al. 2005) in the United Kingdom, and the
DNA Databank of Japan (DDBJ) (Tateno et al. 2005). The
sequence data can be searched based on keyword terms or
based on computationally determined similarity to a query
sequence. The depth of annotation associated with genome
sequence data can be very rich, especially for model organ-
isms in which many genes have been well characterized.
To gain additional insight into gene function, gene annota-
tions are linked with gene expression data, to key pathways
in metabolic maps, and to the most recent literature that
further elucidates knowledge about a particular gene func-
tion from a fungal genome. It is mostly beyond the mission
of the sequence archives to maintain these types of special-
ized data, and so specialty databases have arisen over the
years to better cater towards serving the fungal scientific
community. These include:

e Aspergillus Genome Database (AspGD) at http://www.
aspgd.org/

e Fungal Genome Initiative site at
http://www.broadinstitute.org/scientific-community/scie
nce/projects/fungal-genome-initiative/fungal-genome-in
itiative

e JGI MycoCosm site at
http://genome.jgi-psf.org/fungi/

e Saccharomyces Genome Database (SGD) (Christie et al.
2004) at
http://www.yeastgenome.org/

e Candida Genome Database (CGD) (Costanzo et al. 2006)
at
http://candidagenome.org

e CandidaDB (Rossignol et al. 2008) at
http://genolist.pasteur.fr/CandidaDB/

e Comparative Fungal Genomics Platform (Park et al.
2008) at
http://cfgp.riceblast.snu.ac.kr/

e Ensembl Fungi at
http://fungi.ensembl.org/

10. Summary

Accurate eukaryotic gene structure annotation is a complex
task that couples homology-based methods with prediction
algorithms to reveal introns and exons of genes other-
wise hidden within the string of bases that comprise the
DNA sequence. Repeat sequences increase the difficulty of
gene finding by diluting the gene content and confusing
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ab initio gene predictors. Recent developments in repeat
element identification have greatly alleviated this problem,
but repeats still undermine gene discovery in previously
uncharacterized genomes. Since the late 1990s, eukaryotic
ab initio gene prediction tools have evolved from using
the genome sequence exclusively, to incorporating exter-
nal data sources indicating genome homologies to further
improve gene-finding accuracy. Flexible evidence combin-
ers are well suited to yield consensus gene structures given
a wide array of evidence types. High quality databases
of expressed transcript sequences provide an invaluable
resource to genome annotation efforts; at the earliest stage,
they can be leveraged to model gene structures for train-
ing ab initio gene prediction tools and, in the final stage,
they can be used to add the finishing touches to gene
annotations by yielding UTR structures, alternative splic-
ing variations, and identification of polyadenylation sites;
all tasks mediated by our PASA software (Haas et al. 2003).
All automated methods are less than perfect, so it is incum-
bent upon interested scientists to manually repair errant
annotations using genome annotation editing software such
as ARGO (Engels 2003-2011), Apollo (Lewis et al. 2002),
or Artemis (Rutherford et al. 2000).

The Broad Institute fungal genome annotation pipeline
exemplifies how bioinformatics tools are coupled together
to find and model genes in any newly sequenced genome.
The set of automatically generated gene structures pro-
duced by the annotation pipeline is, in many ways, the
end of the beginning. As knowledge accrues from further
studying the genome sequence coupled with downstream
experimentation, the genome annotations and related
resources will need to be continually refined.

Acknowledgements

We thank Christian Stolte and Leslie Gaffney for help in figure
illustration; Zehua Chen and Sharvari Gujja for comments on the
manuscript; Li-Jun Ma for inviting us to submit to this special
issue; and the National Human Genome Research Institute for
initial support of the fungal genome initiative (FGI) at the Broad
Institute.

References

Abeel T. 2006-2011. GenomeView. http://genomevieworg/

Adams KL, Palmer JD. 2003. Evolution of mitochondrial
gene content: gene loss and transfer to the nucleus. Mol
Phylogenet Evol. 29(3):380-395. Available from http://
www.ncbi.nlm.nih.gov/pubmed/14615181 http://www.ncbi.
nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed
&dopt=Citation&list_uids=18087260 doi nrg2220 [pii]
10.1038/nrg2220

Alexandersson M, Cawley S, Pachter L. 2003. SLAM: cross-
species gene finding and alignment with a generalized
pair hidden Markov model. Genome Res. 13(3):496-502.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids
=12618381



Downloaded by [Brian Haas| at 07:24 23 September 2011

18 B.J. Haas et al.

Allen JE, Pertea M, Salzberg SL. 2004. Computational gene
prediction using multiple sources of evidence. Genome Res.
14(1):142—-148. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=14707176

Allen JE, Salzberg SL. 2005. JIGSAW: integration of multiple
sources of evidence for gene prediction. Bioinformatics.
21(18):3596-3603. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=16076884

Altschul SF, Gish W, Miller W, Myers EW, Lipman DIJ.
1990. Basic local alignment search tool. J Mol Biol.
215(3):403—410. Available from http://www.ncbi.nlm.nih.
gov/pubmed/2231712 doi 10.1006/jmbi.1990.9999

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z,
Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-
BLAST: a new generation of protein database search pro-
grams. Nucleic Acids Res. 25(17):3389-3402. Available
from http://www.ncbi.nlm.nih.gov/pubmed/9254694

Ansong C, Purvine SO, Adkins JN, Lipton MS, Smith RD.
2008. Proteogenomics: needs and roles to be filled by pro-
teomics in genome annotation. Brief Func Genom Proteom.
7(1):50-62. Available from http://www.ncbi.nlm.nih.gov/
pubmed/18334489 doi 10.1093 /bfgp/eln010

Ashurst JL, Chen CK, Gilbert JG, Jekosch K, Keenan S,
Meidl P, Searle SM, Stalker J, Storey R, Trevanion
S, et al. 2005. The Vertebrate Genome Annotation
(Vega) database. Nucleic Acids Res. 33(Database
issue):D459-465. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed & dopt=
Citation&list_uids=15608237

Bao Z, Eddy SR. 2002. Automated de novo identification of
repeat sequence families in sequenced genomes. Genome
Res. 12(8):1269-1276. Available from http://www.ncbi.
nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed
&dopt=Citation&list_uids=12176934

Batzoglou S, Pachter L, Mesirov JP, Berger B, Lander ES.
2000. Human and mouse gene structure: comparative
analysis and application to exon prediction. Genome
Res. 10(7):950-958. Available from http://www.ncbi.
nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve & db=PubMed
&dopt=Citation&list_uids=10899144

Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler
DL. 2005. GenBank. Nucleic Acids Res. 33(Database
issue):D34-38. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=15608212

Benson G. 1999. Tandem repeats finder: a program
to analyze DNA sequences. Nucleic Acids Res.
27(2):573-580. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi? cmd=Retrieve& db=PubMed&dopt=
Citation&list_uids=9862982 doi gkc131 [pii]

Birney E, Clamp M, Durbin R. 2004a. GeneWise and
Genomewise. Genome Res. 14(5):988-995. Available from
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retriev
e&db=PubMed&dopt=Citation&list_uids=15123596

Birney E, Andrews TD, Bevan P, Caccamo M, Chen Y, Clarke
L, Coates G, Cuff J, Curwen V, Cutts T, et al. 2004b.
An overview of Ensembl. Genome Res. 14(5):925-928.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=15078858

Bitton DA, Wood V, Scutt PJ, Grallert A, Yates T, Smith DL,
Hagan IM, Miller CJ. 2011. Augmented Annotation of the
Schizosaccharomyces pombe Genome Reveals Additional

Genes Required for Growth and Viability. Genetics.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$s=21270388 doi  genetics.110.123497  [pii]10.1534/
genetics.110.123497

Brejova B, Brown DG, Li M, Vinar T. 2005. ExonHunter: a
comprehensive approach to gene finding. Bioinformatics
21 Suppl 1:i157-65. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=15961499

Brejova B, Vinar T, Chen Y, Wang S, Zhao G, Brown DG,
Li M, Zhou Y. 2009. Finding genes in Schistosoma
japonicum: annotating novel genomes with help of
extrinsic evidence. Nucleic Acids Res. 37(7):e52.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$=19264800 doi gkp052 [pii]10.1093 /nar/gkp052

Brent MR. 2008. Steady progress and recent breakthroughs in the
accuracy of automated genome annotation. Nat Rev Genet.
9(1):62-73. Available from

Brent MR, Guigo R. 2004. Recent advances in gene struc-
ture prediction. Curr Opin Struct Biol. 14(3):264-272.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=15193305

Burge C, Karlin S. 1997. Prediction of complete gene struc-
tures in human genomic DNA. J Mol Biol. 268(1):78-94.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$s=9149143

Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S,
Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, et
al. 2009. Evolution of pathogenicity and sexual reproduction
in eight Candida genomes. Nature 459(7247):657-662.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$=19465905 doi nature08064 [pii] 10.1038 /naturc08064

Campbell MA, Haas BJ, Hamilton JP, Mount SM,
Buell CR. 2006. Comprehensive analysis of alter-
native splicing in rice and comparative analyses with
Arabidopsis. BMC Genomics 7:327. Available from http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=17194304

Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B,
Holt C, Sanchez Alvarado A, Yandell M. 2008. MAKER:
an easy-to-use annotation pipeline designed for emerging
model organism genomes. Genome Res. 18(1):188-196.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fegi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=18025269 doi gr.6743907 [pii]10.1101/gr.6743907

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V,
Henrissat B. 2009. The Carbohydrate-Active EnZymes
database (CAZy): an expert resource for Glycogenomics.
Nucleic  Acids Res. 37(Database issue):D233-238.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=18838391 doi gkn663 [pii]10.1093 /nar/gkn663

Cardoso MA, Tambor JH, Nobrega FG. 2007. The mito-
chondrial genome from the thermal dimorphic fungus
Paracoccidioides  brasiliensis.  Yeast.  24(7):607-616.
Available  from  http://www.ncbi.nlm.nih.gov/pubmed/
17492801 doi 10.1002/yea.1500

Christie KR, Weng S, Balakrishnan R, Costanzo MC, Dolinski
K, Dwight SS, Engel SR, Feierbach B, Fisk DG, Hirschman
JE, et al. 2004. Saccharomyces Genome Database



Downloaded by [Brian Haas| at 07:24 23 September 2011

(SGD) provides tools to identify and analyze sequences
from Saccharomyces cerevisiae and related sequences
from other organisms. Nucleic Acids Res. 32(Database
issue):D311-314. Available from http://www.ncbi.nlm.nih.
gov/entrez/query. fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=14681421

Coleman JJ, Mylonakis E. 2009. Efflux in fungi: la piece de
resistance. PLoS Pathog. 5(6):¢1000486. Available from
http://www.ncbi.nlm.nih.gov/entrez/query.cmd=fcgi?Retriev
e&db=PubMed&dopt=Citation&list_uids=19557154  doi
10.1371/journal.ppat.1000486

Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M,
Robles M. 2005. Blast2GO: a universal tool for anno-
tation, visualization and analysis in functional genomics
research. Bioinformatics 21(18):3674-3676. Available
from http://www.ncbi.nlm.nih.gov/pubmed/16081474  doi
10.1093 /bioinformatics/bti610

Costanzo MC, Arnaud MB, Skrzypek MS, Binkley G, Lane
C, Miyasato SR, Sherlock G. 2006. The Candida Genome
Database: facilitating research on Candida albicans molec-
ular biology. FEMS Yeast Res. 6(5):671-684. Available
from http://www.ncbi.nlm.nih.gov/pubmed/16879419  doi
10.1111/j.1567-1364.2006.00074.x

Cummings DJ, McNally KL, Domenico JM, Matsuura ET. 1990.
The complete DNA sequence of the mitochondrial genome of
Podospora anserina. Curr Genet. 17(5):375-402. Available
from http://www.ncbi.nlm.nih.gov/pubmed/2357736

Cuomo CA, Birren BW. 2010. The fungal genome initiative and
lessons learned from genome sequencing. Methods Enzymol.
470:833-855. Available from http://www.ncbi.nlm.nih.gov/
pubmed/20946837 doi 10.1016/S0076-6879(10)70034-3

DeCaprio D, Vinson JP, Pearson MD, Montgomery P, Doherty M,
Galagan JE. 2007. Conrad: gene prediction using conditional
random fields. Genome Res. 17(9):1389-1398. Available
from http://www.ncbi.nlm.nih.gov/pubmed/17690204 doi
10.1101/gr.6558107

Delcher AL, Phillippy A, Carlton J, Salzberg SL. 2002. Fast algo-
rithms for large-scale genome alignment and comparison.
Nucleic Acids Res. 30(11):2478-2483. Available from http://
www.ncbi.nlm.nih.gov/pubmed/12034836

Do JH, Choi DK. 2006. Computational approaches to gene pre-
diction. J Microbiol. 44(2):137—144. Available from http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=16728949

D’Souza CA, Kronstad JW, Taylor G, Warren R, Yuen M,
Hu G, Jung WH, Sham A, Kidd SE, Tangen K, et
al. 2011. Genome Variation in Cryptococcus gattii, an
Emerging Pathogen of Immunocompetent Hosts. MBio.
2(1). Available from http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?cmd=Retrieve&db=PubMed & dopt=Citation&li
st_uids=21304167 doi mBi0.00342-10 [pii] 10.1128/mBio.
00342-10

Eddy SR. 2001. Non-coding RNA genes and the mod-
ern RNA world. Nat Rev Genet. 2(12):919-929.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=11733745

Eddy SR. 2002a. Computational genomics of noncoding RNA
genes. Cell. 109(2):137-140. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=12007398

Eddy SR. 2002b. A memory-efficient dynamic programming
algorithm for optimal alignment of a sequence to an RNA
secondary structure. BMC Bioinformatics 3:18. Available
from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=
Retrieve&db=PubMed&dopt=Citation&list_uids=12095421

Mycology 19

Eddy SR, Durbin R. 1994. RNA sequence analysis using
covariance models. Nucleic Acids Res. 22(11):2079-2088.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fegi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$s=8029015

Edgar RC, Myers EW. 2005. PILER: identification and clas-
sification of genomic repeats. Bioinformatics 21 Suppl
1:1152-158.  Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=15961452

Emanuelsson O, Brunak S, von Heijne G, Nielsen H. 2007.
Locating proteins in the cell using TargetP, SignalP
and related tools. Nat Protoc. 2(4):953-971. Available
from http://www.ncbi.nlm.nih.gov/pubmed/17446895 doi
10.1038 /nprot.2007.131

Engels R. 2003-2011. ARGO Genome Browser. http:/
wwwbroadinstituteorg/annotation/argo/.

Eyras E, Caccamo M, Curwen V, Clamp M. 2004. ESTGenes:
alternative splicing from ESTs in Ensembl. Genome Res.
14(5):976-987. Available from http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cita
tion&list_uids=15123595

Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington
JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et
al. 2010. The Pfam protein families database. Nucleic
Acids Res. 38(Database issue):D211-222. Available
from http://www.ncbi.nlm.nih.gov/pubmed/19920124  doi
10.1093 /nar/gkp985

Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W. 1998.
A computer program for aligning a cDNA sequence with
a genomic DNA sequence. Genome Res. 8(9):967-974.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$s=9750195

Florea L, Di Francesco V, Miller J, Turner R, Yao A,
Harris M, Walenz B, Mobarry C, Merkulov GV,
Charlab R, et al. 2005. Gene and alternative splic-
ing annotation with AIR. Genome Res. 15(1):54-66.
Available from http:/www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$s=15632090

Flutre T, Inizan O, Hoede C, Quesneville H. 2010. REPET:
pipelines for the identification and annotation of transposable
elements in genomic sequences. Plant & Animal Genome
(PAG) XVIII Conference (January 9—13, 2010).

Forget L, Ustinova J, Wang Z, Huss VA, Lang BE 2002.
Hyaloraphidium curvatum: a linear mitochondrial genome,
tRNA editing, and an evolutionary link to lower fungi. Mol
Biol Evol. 19(3):310-319. Available from http://www.ncbi.
nlm.nih.gov/pubmed/11861890

Formighieri EF, Tiburcio RA, Armas ED, Medrano FJ, Shimo
H, Carels N, Goes-Neto A, Cotomacci C, Carazzolle MF,
Sardinha-Pinto N, et al. 2008. The mitochondrial genome
of the phytopathogenic basidiomycete Moniliophthora
perniciosa is 109 kb in size and contains a stable integrated
plasmid. Mycol Res. 112(Pt 10):1136-1152. Available
from http://www.ncbi.nlm.nih.gov/pubmed/18786820 doi
10.1016/j.mycres.2008.04.014

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann
H, Galibert F, Hoheisel JD, Jacq C, Johnston M, et al. 1996.
Life with 6000 genes. Science. 274(5287):546, 563-547.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=8849441

Grewal SI. 2010. RNAi-dependent formation of heterochro-
matin and its diverse functions. Curr Opin Genet Dev.



Downloaded by [Brian Haas| at 07:24 23 September 2011

20 B.J. Haas et al.

20(2):134—-141. Available from http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citat
ion&list_uids=20207534 doi  S0959-437X(10)00028-6
[pii]10.1016/j.gde.2010.02.003

Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR.
2003. Rfam: an RNA family database. Nucleic Acids Res.
31(1):439-441. Available from http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citat
ion&list_uids=12520045

Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy
SR, Bateman A. 2005. Rfam: annotating non-coding
RNAs in complete genomes. Nucleic Acids Res.
33(Database issue):D121-124. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=15608160

Gross SS, Brent MR. 2006. Using multiple alignments to
improve gene prediction. J Comput Biol. 13(2):379-393.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids
=16597247

Gross SS, Do CB, Sirota M, Batzoglou S. 2007. CONTRAST:
a discriminative, phylogeny-free approach to multiple infor-
mant de novo gene prediction. Genome Biol. 8(12):R269.
Available  from  http://www.ncbi.nlm.nih.gov/pubmed/
18096039 doi 10.1186/gb-2007-8-12-r269

Guigo R. 1998. Assembling genes from predicted exons
in linear time with dynamic programming. J Comput
Biol. 5(4):681-702. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=10072084

Guigo R, Flicek P, Abril JF, Reymond A, Lagarde J, Denoeud
F, Antonarakis S, Ashburner M, Bajic VB, Birney E, et al.
2006. EGASP: the human ENCODE Genome Annotation
Assessment Project. Genome Biol. 7 Suppl 1:S2 1-31.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids
=16925836

Haas BJ, Zody MC. 2010. Advancing RNA-Seq analysis. Nat
Biotechnol. 28(5):421-423. Available from http://www.ncbi.
nlm.nih.gov/pubmed/20458303 doi 10.1038/nbt0510-421

Haas BJ, Volfovsky N, Town CD, Troukhan M, Alexandrov N,
Feldmann KA, Flavell RB, White O, Salzberg SL. 2002.
Full-length messenger RNA sequences greatly improve
genome annotation. Genome Biol. 3(6): RESEARCH0029.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids
=12093376

Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith
RK, Jr, Hannick LI, Maiti R, Ronning CM, Rusch
DB, Town CD, et al. 2003. Improving the Arabidopsis
genome annotation using maximal transcript align-
ment assemblies. Nucleic Acids Res. 31(19):5654-5666.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids
=14500829

Haas BJ, Wortman JR, Ronning CM, Hannick LI, Smith RK,
Jr., Maiti R, Chan AP, Yu C, Farzad M, Wu D, et al. 2005.
Complete reannotation of the Arabidopsis genome: meth-
ods, tools, protocols and the final release. BMC Biol. 3:7.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids
=15784138

Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White
O, Buell CR, Wortman JR. 2008. Automated eukaryotic
gene structure annotation using EVidenceModeler and
the Program to Assemble Spliced Alignments. Genome

Biol. 9(1):R7. Available from http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citat
ion&list_uids=18190707 doi gb-2008-9-1-r7 [pii] 10.
1186/gb-2008-9-1-r7

Haft DH, Selengut JD, White O. 2003. The TIGRFAMs database
of protein families. Nucleic Acids Res. 31(1):371-373.
Available  from  http://www.ncbi.nlm.nih.gov/pubmed/
12520025

Hane JK, Lowe RG, Solomon PS, Tan KC, Schoch CL,
Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan
JE, et al. 2007. Dothideomycete plant interactions illu-
minated by genome sequencing and EST analysis of
the wheat pathogen Stagonospora nodorum. Plant Cell
19(11):3347-3368. Available from http://www.ncbi.nlm.nih.
gov/pubmed/18024570 doi 10.1105/tpc.107.052829

He L, Hannon GJ. 2004. MicroRNAs: small RNAs with a big
role in gene regulation. Nat Rev Genet. 5(7):522-531.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=15211354

Howe KL, Chothia T, Durbin R. 2002. GAZE: a generic
framework for the integration of gene-prediction data by
dynamic programming. Genome Res. 12(9):1418-1427.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=12213779

Huang X, Adams MD, Zhou H, Kerlavage AR. 1997. A tool
for analyzing and annotating genomic sequences. Genomics
46(1):37-45. Available from http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cita
tion&list_uid
$s=9403056

Hyatt D, Chen GL, Locascio PE Land ML, Larimer FW,
Hauser LJ. 2010. Prodigal: prokaryotic gene recog-
nition and translation initiation site identification.
BMC Bioinformatics 11:119. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=20211023 doi 1471-2105-
11-119 [pii] 10.1186/1471-2105-11-119

Ivashchenko AT, Tauasarova MK, Atambaeva Sh A. 2009.
[Exon-intron structure of genes of fungi genomes].
Mol Biol (Mosk). 43(1):28-35. Available from http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=19334523

Jurka J. 2000. Repbase update: a database and an electronic
journal of repetitive elements. Trends Genet. 16(9):418-420.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=10973072

Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany
O, Walichiewicz J. 2005. Repbase Update, a database of
eukaryotic repetitive elements. Cytogenet Genome Res.
110(1-4):462-467. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=16093699

Juhasz A, Pfeiffer I, Keszthelyi A, Kucsera J, Vagvolgyi
C, Hamari Z. 2008. Comparative analysis of the com-
plete mitochondrial genomes of Aspergillus niger
mtDNA type la and Aspergillus tubingensis mtDNA
type 2b. FEMS Microbiol Lett. 281(1):51-57. Available
from http://www.ncbi.nlm.nih.gov/pubmed/18318841 doi
10.1111/j.1574-6968.2008.01077.x

Kanz C, Aldebert P, Althorpe N, Baker W, Baldwin A,
Bates K, Browne P, van den Broek A, Castro M,
Cochrane G, et al. 2005. The EMBL Nucleotide Sequence
Database. Nucleic Acids Res. 33(Database issue):D29-33.



Downloaded by [Brian Haas| at 07:24 23 September 2011

Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?emd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=15608199

Katinka MD, Duprat S, Cornillot E, Metenier G,
Thomarat F, Prensier G, Barbe V, Peyretaillade E,
Brottier P, Wincker P, et al. 2001. Genome sequence
and gene compaction of the eukaryote parasite
Encephalitozoon  cuniculi. Nature 414(6862):450-453.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=11719806

Kazazian HH, Jr. 2004. Mobile elements: drivers of
genome  evolution.  Science  303(5664):1626—-1632.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=15016989

Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES. 2003.
Sequencing and comparison of yeast species to identify
genes and regulatory elements. Nature 423(6937):241-254.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=12748633 doi 10.1038 /nature01644nature01644 [pii]

Kent WJ. 2002. BLAT - the BLAST-like alignment tool.
Genome Res. 12(4):656-664. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=11932250

Keren H, Lev-Maor G, Ast G. 2010. Alternative splicing and evo-
lution: diversification, exon definition and function. Nat Rev
Genet. 11(5):345-355. Available from http://www.ncbi.nlm.
nih.gov/pubmed/20376054 doi 10.1038/nrg2776

Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC,
Wolfe KH, Fedorova ND. 2010. SMURF: Genomic map-
ping of fungal secondary metabolite clusters. Fungal
Genet Biol. 47(9):736-741. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=20554054 doi  S1087-
1845(10)00105-2 [pii]10.1016/j.fgb.2010.06.003

Korf 1. 2004. Gene finding in novel genomes. BMC
Bioinformatics 5:59. Available from http://www.ncbi.
nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed
&dopt=Citation&list_uids=15144565

Korf I, Flicek P, Duan D, Brent MR. 2001. Integrating
genomic homology into gene structure prediction.
Bioinformatics 17 Suppl 1:5S140-148. Available from http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=11473003

Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001.
Predicting transmembrane protein topology with a hidden
Markov model: application to complete genomes. J Mol
Biol. 305(3):567-580. Available from http://www.ncbi.nlm.
nih.gov/pubmed/11152613 doi 10.1006/jmbi.2000.4315

Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes
T, Ussery DW. 2007. RNAmmer: consistent and rapid
annotation of ribosomal RNA genes. Nucleic Acids Res.
35(9):3100-3108. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=17452365 doi  gkml60  [pii]l0.
1093 /nar/gkm160

Lee YS, Shibata Y, Malhotra A, Dutta A. 2009. A novel class
of small RNAs: tRNA-derived RNA fragments (tRFs).
Genes Dev. 23(22):2639-2649. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=19933153 doi 23/22/2639
[pii]10.1101/gad.1837609

Lejeune E, Bayne EH, Allshire RC. 2011. On the
Connection between RNAi and Heterochromatin at
Centromeres. Cold Spring Harb Symp Quant Biol.

Mycology 21

Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=21289046 doi  sqb.2010.75.024  [pii]10.1101/sqb.
2010.75.024

Lerat E. 2010. Identifying repeats and transposable elements
in sequenced genomes: how to find your way through
the dense forest of programs. Heredity 104(6):520-533.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$s=19935826 doi hdy2009165 [pii]10.1038/hdy.2009.165

Lewis SE, Searle SM, Harris N, Gibson M, Lyer YV,
Richter J, Wiel C, Bayraktaroglir L, Birney E,
Crosby MA, et al. 2002. Apollo: a sequence anno-
tation editor. Genome Biol. 3(12):RESEARCHO0082.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=12537571

Li W-H. 1997. Molecular evolution. Sunderland, Mass.: Sinauer
Associates. Wen-Hsiung Li. ill.

Li W-H, Gojobori T, Nei M. 1981. Pseudogenes as a
paradigm of neutral evolution. Nature. 292(5820):237-239.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=7254315

Lin MF, Carlson JW, Crosby MA, Matthews BB, Yu C, Park
S, Wan KH, Schroeder AJ, Gramates LS, St Pierre SE,
et al. 2007. Revisiting the protein-coding gene catalog of
Drosophila melanogaster using 12 fly genomes. Genome Res.
17(12):1823-1836. Available from http://www.ncbi.nlm.nih.
gov/pubmed/17989253 doi 10.1101/gr.6679507

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program
for improved detection of transfer RNA genes in
genomic sequence. Nucleic Acids Res. 25(5):955-964.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$s=9023104

Lukashin AV, Borodovsky M. 1998. GeneMark.hmm: new solu-
tions for gene finding. Nucleic Acids Res. 26(4):1107-1115.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$=9461475

Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M,
Elias M, Idnurm A, Lang BE, Sone T, et al. 2009. Genomic
analysis of the basal lineage fungus Rhizopus oryzae reveals
a whole-genome duplication. PLoS Genet. 5(7):1000549.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$s=19578406 doi 10.1371 /journal.pgen.1000549

Ma LJ, van der Does HC, Borkovich KA, Coleman JJ,
Daboussi MJ, Di Pietro A, Dufresne M, Freitag M,
Grabherr M, Henrissat B, et al. 2010. Comparative
genomics  reveals mobile  pathogenicity = chromo-
somes in  Fusarium. Nature. 464(7287):367-373.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
$=20237561 doi nature08850 [pii]10.1038 /nature08850

Manning G, Plowman GD, Hunter T, Sudarsanam S.
2002. Evolution of protein kinase signaling from
yeast to man. Trends Biochem Sci. 27(10):514-520.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=12368087 doi S0968000402021795
[pii]

Massey SE, Moura G, Beltrao P, Almeida R, Garey JR,
Tuite MF, Santos MA. 2003. Comparative evolutionary
genomics unveils the molecular mechanism of reassign-
ment of the CTG codon in Candida spp. Genome Res.



Downloaded by [Brian Haas| at 07:24 23 September 2011

22 B.J. Haas et al.

13(4):544-557. Available from http://www.ncbi.nlm.nih.gov/
pubmed/12670996 doi 10.1101/gr.811003

Majoros WH, Pertea M, Salzberg SL. 2004. TigrScan and
GlimmerHMM: two open source ab initio eukary-
otic  gene-finders. Bioinformatics  20(16):2878-2879.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=15145805

Majoros WH, Pertea M, Salzberg SL. 2005. Efficient imple-
mentation of a generalized pair hidden Markov model for
comparative gene finding. Bioinformatics. 21(9):1782—1788.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=15691859

McGuire AM, Pearson MD, Neafsey DE, Galagan JE. 2008.
Cross-kingdom patterns of alternative splicing and splice
recognition. Genome Biol. 9(3):R50. Available from http:/
/www.ncbi.nlm.nih.gov/pubmed/18321378 doi 10.1186/gb-
2008-9-3-r50

Mighell AJ, Smith NR, Robinson PA, Markham AF. 2000.
Vertebrate pseudogenes. FEBS Lett. 468(2-3):109-114.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=10692568

Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell
KS, Hradecky P, Huang Y, Kaminker JS, Millburn
GH, Prochnik SE, et al. 2002. Annotation of the
Drosophila melanogaster euchromatic genome: a sys-
tematic review. Genome Biol. 3(12):RESEARCHO0083.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=12537572

Mitrovich QM, Tuch BB, Guthrie C, Johnson AD. 2007.
Computational and experimental approaches double
the number of known introns in the pathogenic yeast
Candida albicans. Genome Res. 17(4):492-502. Available
from http://www.ncbi.nlm.nih.gov/pubmed/17351132  doi
10.1101/gr.6111907

Mott R. 1997. EST_GENOME: a program to align spliced
DNA sequences to unspliced genomic DNA. Comput
Appl Biosci. 13(4):477-478. Available from http:/www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=9283765

Nemecek JC, Wuthrich M, Klein BS. 2006. Global con-
trol of dimorphism and virulence in fungi. Science
312(5773):583-588. Available from http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&do
pt=Citation&list_uids=16645097 doi 312/5773/583 [pii]
10.1126/science.1124105

Nemecek JC, Wuthrich M, Klein BS. 2007. Detection and mea-
surement of two-component systems that control dimorphism
and virulence in fungi. Methods Enzymol. 422:465-487.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=17628155 doi S0076-6879(06)22024-X [pii] 10.1016/
S0076-6879(06)22024-X

Nelson P, Kiriakidou M, Sharma A, Maniataki E,
Mourelatos Z. 2003. The microRNA world: small
is  mighty. Trends Biochem Sci. 28(10):534-540.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=14559182

Nicholson P, Muhlemann O. 2010. Cutting the nonsense: the
degradation of PTC-containing mRNAs. Biochemical Soc
Trans. 38(6):1615-1620. Available from http://www.ncbi.
nlm.nih.gov/pubmed/21118136 doi 10.1042/BST0381615

Otto TD, Dillon GP, Degrave WS, Berriman M. 2011. RATT:
Rapid Annotation Transfer Tool. Nucleic Acids Res.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fegi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=21306991 doi  gkql268 [pii] 10.1093 /nar/
gkql1268

Pachter L, Alexandersson M, Cawley S. 2002. Applications
of generalized pair hidden Markov models to alignment
and gene finding problems. J Comput Biol. 9(2):389-399.
Available from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uid
s=12015888

Park J, Park B, Jung K, Jang S, Yu K, Choi J, Kong S, Kim S,
Kim H, Kim JF, et al. 2008. CFGP: a web-based, comparative
fungal genomics platform. Nucleic Acids Res. 36(Database
issue):D562-571. Available from  http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=17947331 doi gkm758 [pii] 10.1093/
nar/gkm?758

Parra G, Blanco E, Guigo R. 2000. GenelD in Drosophila.
Genome Res. 10(4):511-515. Available from http:/www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=10779490

Parra G, Agarwal P, Abril JE, Wiehe T, Fickett JW, Guigo R.
2003. Comparative gene prediction in human and mouse.
Genome Res. 13(1):108-117. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=12529313

Parra G, Bradnam K, Korf I. 2007. CEGMA: a pipeline
to accurately annotate core genes in eukaryotic genomes.
Bioinformatics 23(9):1061-1067. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=17332020 doi btm071 [pii]
10.1093 /bioinformatics/btm071

Pierleoni A, Martelli PL, Casadio R. 2008. PredGPI: a GPI-
anchor predictor. BMC Bioinformatics 9:392. Available from
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrie
ve&db=PubMed&dopt=Citation&list_uids=18811934 doi
1471-2105-9-392 [pii] 10.1186/1471-2105-9-392

Price AL, Jones NC, Pevzner PA. 2005. De novo iden-
tification of repeat families in large genomes.
Bioinformatics 21 Suppl 1:1351-358. Awvailable from http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=15961478

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies
J, Glockner FO. 2007. SILVA: a comprehensive online
resource for quality checked and aligned ribosomal
RNA sequence data compatible with ARB. Nucleic
Acids Res. 35(21):7188-7196. Available from http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=17947321 doi gkm
864 [pii] 10.1093 /nar/gkm864

Rawlings ND, Tolle DP, Barrett AJ. 2004. MEROPS: the
peptidase database. Nucleic Acids Res. 32(Database
issue):D160-164. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=14681384 doi  10.1093/nar/gkh071
32/suppl_1/D160 [pii]

Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ,
Habib N, Wapinski I, Roy S, Lin ME Heiman DI,
et al. 2011. Comparative functional genomics of the
fission yeasts. Science 332(6032):930-936. Available
from http://www.ncbi.nlm.nih.gov/pubmed/21511999  doi
10.1126/science.1203357

Rossignol T, Lechat P, Cuomo C, Zeng Q, Moszer I, d’Enfert
C. 2008. CandidaDB: a multi-genome database for Candida



Downloaded by [Brian Haas| at 07:24 23 September 2011

species and related Saccharomycotina. Nucleic Acids
Res. 36(Database issue):D557-561. Available from http:/
www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=18039716 doi gkm
1010 [pii] 10.1093 /nar/gkm1010

Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream
MA, Barrell B. 2000. Artemis: sequence visualization and
annotation. Bioinformatics 16(10):944-945. Available from
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve
&db=PubMed&dopt=Citation&list_uids=11120685

Salamov AA, Solovyev VV. 2000. A4b initio gene find-
ing in Drosophila genomic DNA. Genome Res.
10(4):516-522. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=10779491

Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda
M, Dixon JE, Zipursky SL. 2000. Drosophila Dscam
is an axon guidance receptor exhibiting extraordinary
molecular diversity. Cell 101(6):671-684. Available from
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve
&db=PubMed&dopt=Citation&list_uids=10892653

Schwarz EM, Antoshechkin I, Bastiani C, Bieri T, Blasiar
D, Canaran P, Chan J, Chen N, Chen WJ, Davis P, et al.
2006. WormBase: better software, richer content. Nucleic
Acids Res. 34(Database issue):D475-478. Available from
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve
&db=PubMed&dopt=Citation&list_uids=16381915

Shapiro JA, von Sternberg R. 2005. Why repetitive DNA is
essential to genome function. Biol Rev Camb Philos Soc.
80(2):227-250. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=15921050

Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman
JR, Jordar VS, Maiti R, Kodira CD, Neafsey DE, Zeng
Q, et al. 2009. Comparative genomic analyses of the
human fungal pathogens Coccidioides and their rela-
tives. Genome Res. 19(10):1722—-1731. Available from
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve
&db=PubMed&dopt=Citation&list_uids=19717792. Doi
¢r.087551.108 [pii]10.1101/gr.087551.108

Shelest E. 2008. Transcription factors in fungi. FEMS Microbiol
Lett. 286(2):145-151. Available from http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt
=Citation&list_uids=18789126 doi  FML1293  [pii]
10.1111/j.1574-6968.2008.01293.x

Slater GS, Birney E. 2005. Automated generation of
heuristics for biological sequence comparison. BMC
Bioinformatics 6:31. Available from http:/www.ncbi.nlm.
nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt
=Citation&list_uids=15713233

Smit A, Hubley R. RepeatModeler. http://wwwrepeatmasker
org/RepeatModelerhtml.

Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stuber
K, Ver Loren van Themaat E, Brown JK, Butcher SA, Gurr
SJ, et al. 2010. Genome expansion and gene loss in powdery
mildew fungi reveal tradeoffs in extreme parasitism. Science
330(6010):1543-1546. Available from http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt
=Citation&list_uids=21148392 doi 330/6010/1543 [pii]
10.1126/science.1194573

Stajich JE. http://fungalgenomes.org/. http://fungalgenomesorg/.
Available

Stajich JE, Wilke SK, Ahren D, Au CH, Birren BW, Borodovsky
M, Burns C, Canback B, Casselton LA, Cheng CK, et al.
2010. Insights into evolution of multicellular fungi from

Mycology 23

the assembled chromosomes of the mushroom Coprinopsis
cinerea (Coprinus cinereus). Proc Natl Acad Sci USA
107(26):11889-11894. Available from http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt
=Citation&list_uids=20547848 doi 1003391107 [pii]
10.1073 /pnas.1003391107

Stalder L, Muhlemann O. 2008. The meaning of nonsense.
Trends Cell Biol. 18(7):315-321. Available from http://www.
ncbi.nlm.nih.gov/pubmed/18524595 doi 10.1016/j.tcb.2008.
04.005

Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D,
Thanaraj TA, Soreq H. 2005. Function of alternative splic-
ing. Gene 344:1-20. Available from http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt
=Citation&list_uids=15656968

Stanke M, Waack S. 2003. Gene prediction with a hidden
Markov model and a new intron submodel. Bioinformatics
19 Suppl 2:11215-11225. Available from http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt
=Citation&list_uids=14534192

Stanke M, Schoffmann O, Morgenstern B, Waack S. 2006.
Gene prediction in eukaryotes with a generalized hidden
Markov model that uses hints from external sources. BMC
Bioinformatics 7:62. Available from http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt
=Citation&list_uids=16469098

Stergiopoulos I, de Wit PJ. 2009. Fungal effector proteins.
Annu Rev Phytopathol. 47:233-263. Available from http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=19400631 doi 10.
1146/annurev.phyto.112408.132637

Szymanski M, Barciszewska MZ, Zywicki M, Barciszewski
J. 2003. Noncoding RNA transcripts. J Appl Genet.
44(1):1-19. Available from http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cita
tion&list_uids=12590177

Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to iden-
tify repetitive elements in genomic sequences. Curr Protoc
Bioinformatics Chapter 4:Unit 4 10. Available from http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=19274634 doi 10.
1002/0471250953.bi0410s25

Tateno Y, Saitou N, Okubo K, Sugawara H, Gojobori T.
2005. DDBJ in collaboration with mass-sequencing
teams on annotation. Nucleic Acids Res. 33(Database
issue):D25-28. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=15608189

Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin
B, Koonin EV, Krylov DM, Mazumder R, Mekhedov
SL, Nikolskaya AN, et al. 2003. The COG database: an
updated version includes eukaryotes. BMC Bioinformatics
4:41. Available from http://www.ncbi.nlm.nih.gov/pubmed/
12969510 doi 10.1186/1471-2105-4-41

Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky
M. 2008. Gene prediction in novel fungal genomes using an
ab initio algorithm with unsupervised training. Genome Res.
18(12):1979-1990. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=18757608 doi gr.081612.108 [pii]
10.1101/gr.081612.108

Torriani SF,  Goodwin SB, Kema GH, Pangilinan
JL, McDonald BA. 2008. Intraspecific compari-
son and annotation of two complete mitochondrial
genome sequences from the plant pathogenic fungus



Downloaded by [Brian Haas| at 07:24 23 September 2011

24 B.J. Haas et al.

Mycosphaerella  graminicola.  Fungal  Genet Biol.
45(5):628-637. Available from http://www.ncbi.nlm.nih.
gov/pubmed/18226935 doi 10.1016/j.fgb.2007.12.005

Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: dis-
covering splice junctions with RNA-Seq. Bioinformatics
25(9):1105-1111. Available from http://www.ncbi.nlm.nih.
gov/pubmed/19289445 doi 10.1093 /bioinformatics/btp120

Usuka J, Zhu W, Brendel V. 2000. Optimal spliced align-
ment of homologous cDNA to a genomic DNA template.
Bioinformatics 16(3):203-211. Available from http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db
=PubMed&dopt=Citation&list_uids=10869013

Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, Vinar T,
Pfeiffer I, Kucsera J, Tomaska L, Lang BE et al. 2011.
Evolution of linear chromosomes and multipartite genomes
in yeast mitochondria. Nucleic Acids Res. Available
from http://www.ncbi.nlm.nih.gov/pubmed/21266473  doi
10.1093 /nar/gkql345

van Baren MJ, Brent MR. 2006. Iterative gene prediction
and pseudogene removal improves genome annotation.
Genome Res. 16(5):678—685. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=16651666

Vicek C, Marande W, Teijeiro S, Lukes J, Burger G. 2011.
Systematically fragmented genes in a multipartite mitochon-
drial genome. Nucleic Acids Res. 39(3):979-988. Available
from http://www.ncbi.nlm.nih.gov/pubmed/20935050 doi
10.1093 /nar/gkq883

Wang BB, Brendel V. 2006. Genomewide comparative anal-
ysis of alternative splicing in plants. Proc Natl Acad Sci
USA 103(18):7175-7180. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=16632598

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr
C, Kingsmore SF, Schroth GP, Burge CB. 2008. Alternative
isoform regulation in human tissue transcriptomes. Nature
456(7221):470-476. Available from http://www.ncbi.nlm.
nih.gov/pubmed/18978772 doi 10.1038 /nature07509

Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich
GL, He X, Mieczkowski P, Grimm SA, Perou CM,
et al. 2010. MapSplice: accurate mapping of RNA-seq
reads for splice junction discovery. Nucleic Acids Res.
38(18):e178. Available from http://www.ncbi.nlm.nih.gov/
pubmed/20802226 doi 10.1093 /nar/gkq622

Wheelan SJ, Church DM, Ostell JM. 2001. Spidey: a
tool for mRNA-to-genomic alignments. Genome Res.
11(11):1952-1957. Available from http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt
=Citation&list_uids=11691860

Wiehe T, Gebauer-Jung S, Mitchell-Olds T, Guigo R.
2001. SGP-1: prediction and validation of homologous
genes based on sequence alignments. Genome Res.
11(9):1574-1583. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=11544202

Woo PC, Zhen H, Cai JJ, Yu J, Lau SK, Wang J, Teng JL, Wong
SS, Tse RH, Chen R, et al. 2003. The mitochondrial genome
of the thermal dimorphic fungus Penicillium marneffei is
more closely related to those of molds than yeasts. FEBS
Lett. 555(3):469—477. Available from http://www.ncbi.nlm.
nih.gov/pubmed/14675758

Wortman JR, Haas BJ, Hannick LI, Smith RK, Jr., Maiti R,
Ronning CM, Chan AP, Yu C, Ayele M, Whitelaw CA,
et al. 2003. Annotation of the Arabidopsis genome. Plant
Physiol. 132(2):461-468. Available from http://www.ncbi.
nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed
&dopt=Citation&list_uids=12805579

Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC,
Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, et al.
2006. The Universal Protein Resource (UniProt): an expand-
ing universe of protein information. Nucleic Acids Res.
34(Database issue):D187-191. Available from http:/www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=16381842

Wu TD, Watanabe CK. 2005. GMAP: a genomic mapping
and alignment program for mRNA and EST sequences.
Bioinformatics 21(9):1859—1875. Available from http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=15728110

Wu TD, Nacu S. 2010. Fast and SNP-tolerant detection of com-
plex variants and splicing in short reads. Bioinformatics
26(7):873-881. Available from http://www.ncbi.nlm.nih.gov/
pubmed/20147302 doi 10.1093 /bioinformatics/btq057

Wu Y, Yang J, Yang F, Liu T, Leng W, Chu Y, Jin Q.
2009. Recent dermatophyte divergence revealed by compar-
ative and phylogenetic analysis of mitochondrial genomes.
BMC Genomics 10:238. Available from http://www.ncbi.
nlm.nih.gov/pubmed/19457268 doi 10.1186/1471-2164-10-
238

Xue C, Hsueh YP, Heitman J. 2008. Magnificent seven:
roles of G protein-coupled receptors in  extra-
cellular sensing in fungi. FEMS Microbiol Rewv.
32(6):1010-1032. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=18811658 doi FMR131 [pii]
10.1111/j.1574-6976.2008.00131.x

Yang G, Hall TC. 2003. MAK, a computational tool kit
for automated MITE analysis. Nucleic Acids Res.
31(13):3659-3665. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=12824388

Yeh RF, Lim LP, Burge CB. 2001. Computational inference
of homologous gene structures in the human genome.
Genome Res. 11(5):803-816. Available from http:/www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pub
Med&dopt=Citation&list_uids=11337476

Zhang  MQ.  2002. Computational ~ prediction  of
eukaryotic protein-coding genes. Nat Rev Genet.
3(9):698-709. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=12209144

Zhang Z, Gerstein M. 2004. Large-scale analysis of pseu-
dogenes in the human genome. Curr Opin Genet Dev.
14(4):328-335. Available from http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=15261647

Zhang Z, Carriero N, Zheng D, Karro J, Harrison PM, Gerstein
M. 2006. PseudoPipe: an automated pseudogene identifica-
tion pipeline. Bioinformatics 22(12):1437-1439. Available
from http://www.ncbi.nlm.nih.gov/pubmed/16574694 doi
10.1093 /bioinformatics /btl116



