Charles Comiter

Massachusetts Institute of Technology
Massachusetts General Hospital, Harvard Medical School
Broad Institute of MIT and Harvard

 Tissue biology involves an intricate balance between cell-intrinsic processes and interactions between cells organized in specific spatial patterns, which can be respectively captured by single-cell profiling methods, such as single-cell RNA-seq (scRNA-seq), and histology imaging data, such as Hematoxylin-and-Eosin (H&E) stains. While single-cell profiles provide rich molecular information, they can be challenging to collect routinely and do not have spatial resolution. Conversely, histological H&E assays have been a cornerstone of tissue pathology for decades, but do not directly report on molecular details, although the observed structure they capture arises from molecules and cells. Here, we leverage adversarial machine learning to develop SCHAF (Single-Cell omics from Histology Analysis Framework), to generate a tissue sample’s spatially resolved single-cell omics dataset from its H&E histology image. We demonstrate SCHAF on two types of human tumors—from lung and metastatic breast cancer—training with matched samples analyzed by both sc/snRNA-seq and by H&E staining. SCHAF generated appropriate single-cell profiles from histology images in test data, related them spatially, and compared well to ground-truth scRNA-Seq, expert pathologist annotations, or direct MERFISH measurements. SCHAF opens the way to next-generation H&E2.0 analyses and an integrated understanding of cell and tissue biology in health and disease.

MIA Talks Search