Depts. of Biomedical Data Science, Computer Science, and Electrical Engineering, Stanford University

Visualization and exploration of high-dimensional data is a ubiquitous challenge across disciplines. Widely-used techniques such as principal component analysis (PCA) aim to identify dominant trends in one dataset. However, in many settings we have datasets collected in different conditions, e.g. a treatment and a control experiment, and we are interested in visualizing and exploring patterns that are specific to one dataset. We propose a new method, contrastive principal component analysis (cPCA), which identifies low-dimensional structures that are enriched in a dataset relative to comparison data. In a wide variety of experiments, we demonstrate that cPCA with a background dataset enables us to visualize dataset-specific patterns missed by PCA and other standard methods. We further provide a geometric interpretation of cPCA and strong mathematical guarantees. An implementation of cPCA is publicly available, and can be used for exploratory data analysis in applications where PCA is currently used.

MIA Talks Search