You are here

MIA Talks

Polymer models of chromosomes

March 2, 2016
Dept. of Physics, Institute for Medical Engineering and Science, Massachusetts Institute of Technology

DNA of the human genome is 2m long and is folded into a structure that fits in a cell nucleus. One of the central physical questions here is the question of scales: How can microscopic processes of molecular interactions of nanometer scale drive chromosomal organization at microns? Inferring principles of 3D organization of chromosomes from a range of biological data is a challenging biophysical problem. We develop a top-down approach to biophysical modeling of chromosomes. Starting with a minimal set of biologically motivated interactions we build polymer models of chromosome organization that can reproduce major features observed in Hi-C and microscopy experiments. I will present our work on modeling organization of human metaphase and interphase chromosomes.