Scientific Publications

Gene expression-based classification of malignant gliomas correlates better with survival than histological classification

Publication TypeJournal Article
AuthorsNutt, Catherine L., Mani D. R., Betensky Rebecca A., Tamayo Pablo, Cairncross Gregory J., Ladd Christine, Pohl Ute, Hartmann Christian, McLaughlin Margaret E., Batchelor Tracy T., Black Peter M., von Deimling Andreas, Pomeroy Scott L., Golub Todd R., and Louis David N.
AbstractIn modern clinical neuro-oncology, histopathological diagnosis affects therapeutic decisions and prognostic estimation more than any other variable. Among high-grade gliomas, histologically classic glioblastomas and anaplastic oligodendrogliomas follow markedly different clinical courses. Unfortunately, many malignant gliomas are diagnostically challenging; these nonclassic lesions are difficult to classify by histological features, generating considerable interobserver variability and limited diagnostic reproducibility. The resulting tentative pathological diagnoses create significant clinical confusion. We investigated whether gene expression profiling, coupled with class prediction methodology, could be used to classify high-grade gliomas in a manner more objective, explicit, and consistent than standard pathology. Microarray analysis was used to determine the expression of approximately 12000 genes in a set of 50 gliomas, 28 glioblastomas and 22 anaplastic oligodendrogliomas. Supervised learning approaches were used to build a two-class prediction model based on a subset of 14 glioblastomas and 7 anaplastic oligodendrogliomas with classic histology. A 20-feature k-nearest neighbor model correctly classified 18 of the 21 classic cases in leave-one-out cross-validation when compared with pathological diagnoses. This model was then used to predict the classification of clinically common, histologically nonclassic samples. When tumors were classified according to pathology, the survival of patients with nonclassic glioblastoma and nonclassic anaplastic oligodendroglioma was not significantly different (P = 0.19). However, class distinctions according to the model were significantly associated with survival outcome (P = 0.05). This class prediction model was capable of classifying high-grade, nonclassic glial tumors objectively and reproducibly. Moreover, the model provided a more accurate predictor of prognosis in these nonclassic lesions than did pathological classification. These data suggest that class prediction models, based on defined molecular profiles, classify diagnostically challenging malignant gliomas in a manner that better correlates with clinical outcome than does standard pathology.
Year of Publication2003
JournalCancer Research
Volume63
Issue7
Pages1602 - 7
Date Published (YYYY/MM/DD)2003/04/01/
ISBN Number0008-5472
KeywordsBrain Neoplasms, Cancer, Gene Expression Profiling, Genetic, Glioma, Humans, Models, Predictive Value of Tests, Prognosis, Reproducibility of Results, Survival Rate