You are here

Nat Genet DOI:10.1038/ng.3572

A method to decipher pleiotropy by detecting underlying heterogeneity driven by hidden subgroups applied to autoimmune and neuropsychiatric diseases.

Publication TypeJournal Article
Year of Publication2016
AuthorsHan, B, Pouget, JG, Slowikowski, K, Stahl, E, Lee, CHyunkyu, Diogo, D, Hu, X, Park, YRang, Kim, E, Gregersen, PK, Dahlqvist, SRantapää, Worthington, J, Martín, J, Eyre, S, Klareskog, L, Huizinga, T, Chen, W-M, Onengut-Gumuscu, S, Rich, SS, Wray, NR, Raychaudhuri, S
Corporate AuthorsMajor Depressive Disorder Working Group of the Psychiatric Genomics Consortium
JournalNat Genet
Date Published2016 Jul

There is growing evidence of shared risk alleles for complex traits (pleiotropy), including autoimmune and neuropsychiatric diseases. This might be due to sharing among all individuals (whole-group pleiotropy) or a subset of individuals in a genetically heterogeneous cohort (subgroup heterogeneity). Here we describe the use of a well-powered statistic, BUHMBOX, to distinguish between those two situations using genotype data. We observed a shared genetic basis for 11 autoimmune diseases and type 1 diabetes (T1D; P 0.2; 6,670 T1D cases and 7,279 RA cases). Genetic sharing between seronegative and seropostive RA (P


Alternate JournalNat. Genet.
PubMed ID27182969
PubMed Central IDPMC4925284
Grant ListU19 AI111224 / AI / NIAID NIH HHS / United States
T32 HG002295 / HG / NHGRI NIH HHS / United States
T32 GM007753 / GM / NIGMS NIH HHS / United States
U01 GM092691 / GM / NIGMS NIH HHS / United States
U01 DK062418 / DK / NIDDK NIH HHS / United States
R01 AR063759 / AR / NIAMS NIH HHS / United States
UH2 AR067677 / AR / NIAMS NIH HHS / United States