You are here

G3 (Bethesda) DOI:10.1534/g3.116.032797

Comparative Analysis Highlights Variable Genome Content of Wheat Rusts and Divergence of the Mating Loci.

Publication TypeJournal Article
Year of Publication2017
AuthorsCuomo, CA, Bakkeren, G, Khalil, HBadr, Panwar, V, Joly, D, Linning, R, Sakthikumar, S, Song, X, Adiconis, X, Fan, L, Goldberg, JM, Levin, JZ, Young, S, Zeng, Q, Anikster, Y, Bruce, M, Wang, M, Yin, C, McCallum, B, Szabo, LJ, Hulbert, S, Chen, X, Fellers, JP
JournalG3 (Bethesda)
Volume7
Issue2
Pages361-376
Date Published2017 Feb 09
ISSN2160-1836
Abstract

Three members of the Puccinia genus, Pucciniatriticina (Pt), Pstriiformis f.sp. tritici (Pst), and Pgraminis f.sp. tritici (Pgt), cause the most common and often most significant foliar diseases of wheat. While similar in biology and life cycle, each species is uniquely adapted and specialized. The genomes of Pt and Pst were sequenced and compared to that of Pgt to identify common and distinguishing gene content, to determine gene variation among wheat rust pathogens, other rust fungi, and basidiomycetes, and to identify genes of significance for infection. Pt had the largest genome of the three, estimated at 135 Mb with expansion due to mobile elements and repeats encompassing 50.9% of contig bases; in comparison, repeats occupy 31.5% for Pst and 36.5% for Pgt We find all three genomes are highly heterozygous, with Pst [5.97 single nucleotide polymorphisms (SNPs)/kb] nearly twice the level detected in Pt (2.57 SNPs/kb) and that previously reported for Pgt Of 1358 predicted effectors in Pt, 784 were found expressed across diverse life cycle stages including the sexual stage. Comparison to related fungi highlighted the expansion of gene families involved in transcriptional regulation and nucleotide binding, protein modification, and carbohydrate degradation enzymes. Two allelic homeodomain pairs, HD1 and HD2, were identified in each dikaryotic Puccinia species along with three pheromone receptor (STE3) mating-type genes, two of which are likely representing allelic specificities. The HD proteins were active in a heterologous Ustilago maydis mating assay and host-induced gene silencing (HIGS) of the HD and STE3 alleles reduced wheat host infection.

DOI10.1534/g3.116.032797
Pubmed

http://www.ncbi.nlm.nih.gov/pubmed/27913634?dopt=Abstract

Alternate JournalG3 (Bethesda)
PubMed ID27913634
PubMed Central IDPMC5295586