Transgenic labeling of parvalbumin-expressing neurons with tdTomato.

Neuroscience
Authors
Keywords
Abstract

Parvalbumin (PVALB)-expressing fast-spiking interneurons subserve important roles in many brain regions by modulating circuit function and dysfunction of these neurons is strongly implicated in neuropsychiatric disorders including schizophrenia and autism. To facilitate the study of PVALB neuron function we need to be able to identify PVALB neurons in vivo. We have generated a bacterial artificial chromosome (BAC) transgenic mouse line expressing the red fluorophore tdTomato under the control of endogenous regulatory elements of the Pvalb gene locus (JAX # 027395). We show that the tdTomato transgene is faithfully expressed relative to endogenous PVALB expression throughout the brain. Furthermore, targeted patch clamp recordings confirm that the labeled populations in neocortex, striatum, and hippocampus are fast-spiking interneurons based on intrinsic properties. This new transgenic mouse line provides a useful tool to study PVALB neuron function in the normal brain as well as in mouse models of psychiatric disease.

Year of Publication
2016
Journal
Neuroscience
Volume
321
Pages
236-45
Date Published
2016 May 03
ISSN
1873-7544
URL
DOI
10.1016/j.neuroscience.2015.08.036
PubMed ID
26318335
PubMed Central ID
PMC4769998
Links
Grant list
R01 MH097104 / MH / NIMH NIH HHS / United States
5R01MH097104 / MH / NIMH NIH HHS / United States