Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.

Nature
Authors
Keywords
Abstract

A key limitation of the use of the CRISPR-Cas9 system for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), the required PAM sequence is NGG. No natural or engineered Cas9 variants that have been shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG. Here we use phage-assisted continuous evolution to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA and GAT. The PAM compatibility of xCas9 is the broadest reported, to our knowledge, among Cas9 proteins that are active in mammalian cells, and supports applications in human cells including targeted transcriptional activation, nuclease-mediated gene disruption, and cytidine and adenine base editing. Notably, despite its broadened PAM compatibility, xCas9 has much greater DNA specificity than SpCas9, with substantially lower genome-wide off-target activity at all NGG target sites tested, as well as minimal off-target activity when targeting genomic sites with non-NGG PAMs. These findings expand the DNA targeting scope of CRISPR systems and establish that there is no necessary trade-off between Cas9 editing efficiency, PAM compatibility and DNA specificity.

Year of Publication
2018
Journal
Nature
Volume
556
Issue
7699
Pages
57-63
Date Published
2018 04 05
ISSN
1476-4687
DOI
10.1038/nature26155
PubMed ID
29512652
PubMed Central ID
PMC5951633
Links
Grant list
Howard Hughes Medical Institute / United States
R01 EB022376 / EB / NIBIB NIH HHS / United States
R35 GM118062 / GM / NIGMS NIH HHS / United States
RM1 HG009490 / HG / NHGRI NIH HHS / United States