Statistical power and utility of meta-analysis methods for cross-phenotype genome-wide association studies.

PLoS One
Authors
Keywords
Abstract

Advances in recent genome wide association studies (GWAS) suggest that pleiotropic effects on human complex traits are widespread. A number of classic and recent meta-analysis methods have been used to identify genetic loci with pleiotropic effects, but the overall performance of these methods is not well understood. In this work, we use extensive simulations and case studies of GWAS datasets to investigate the power and type-I error rates of ten meta-analysis methods. We specifically focus on three conditions commonly encountered in the studies of multiple traits: (1) extensive heterogeneity of genetic effects; (2) characterization of trait-specific association; and (3) inflated correlation of GWAS due to overlapping samples. Although the statistical power is highly variable under distinct study conditions, we found the superior power of several methods under diverse heterogeneity. In particular, classic fixed-effects model showed surprisingly good performance when a variant is associated with more than a half of study traits. As the number of traits with null effects increases, ASSET performed the best along with competitive specificity and sensitivity. With opposite directional effects, CPASSOC featured the first-rate power. However, caution is advised when using CPASSOC for studying genetically correlated traits with overlapping samples. We conclude with a discussion of unresolved issues and directions for future research.

Year of Publication
2018
Journal
PLoS One
Volume
13
Issue
3
Pages
e0193256
Date Published
2018
ISSN
1932-6203
DOI
10.1371/journal.pone.0193256
PubMed ID
29494641
PubMed Central ID
PMC5832233
Links
Grant list
R00MH101367 / NH / NIH HHS / United States
R01MH085542 / NH / NIH HHS / United States
K24 MH094614 / MH / NIMH NIH HHS / United States
R01MH085545 / NH / NIH HHS / United States
K24MH094614 / NH / NIH HHS / United States
R00 MH101367 / MH / NIMH NIH HHS / United States
R01 MH085542 / MH / NIMH NIH HHS / United States