The Expanding Diversity of Mycobacterium tuberculosis Drug Targets.

ACS Infect Dis
Authors
Keywords
Abstract

After decades of relative inactivity, a large increase in efforts to discover antitubercular therapeutics has brought insights into the biology of Mycobacterium tuberculosis (Mtb) and promising new drugs such as bedaquiline, which inhibits ATP synthase, and the nitroimidazoles delamanid and pretomanid, which inhibit both mycolic acid synthesis and energy production. Despite these advances, the drug discovery pipeline remains underpopulated. The field desperately needs compounds with novel mechanisms of action capable of inhibiting multi- and extensively drug -resistant Mtb (M/XDR-TB) and, potentially, nonreplicating Mtb with the hope of shortening the duration of required therapy. New knowledge about Mtb, along with new methods and technologies, has driven exploration into novel target areas, such as energy production and central metabolism, that diverge from the classical targets in macromolecular synthesis. Here, we review new small molecule drug candidates that act on these novel targets to highlight the methods and perspectives advancing the field. These new targets bring with them the aspiration of shortening treatment duration as well as a pipeline of effective regimens against XDR-TB, positioning Mtb drug discovery to become a model for anti-infective discovery.

Year of Publication
2018
Journal
ACS Infect Dis
Volume
4
Issue
5
Pages
696-714
Date Published
2018 05 11
ISSN
2373-8227
DOI
10.1021/acsinfecdis.7b00255
PubMed ID
29412643
Links