You are here

Nat Methods DOI:10.1038/nmeth.3105

Nanoparticle vesicle encoding for imaging and tracking cell populations.

Publication TypeJournal Article
Year of Publication2014
AuthorsRees, P, Wills, JW, M Brown, R, Tonkin, J, Holton, MD, Hondow, N, Brown, AP, Brydson, R, Millar, V, Carpenter, AE, Summers, HD
JournalNat Methods
Volume11
Issue11
Pages1177-81
Date Published2014 Nov
ISSN1548-7105
KeywordsCell Line, Cell Tracking, Fluorescent Dyes, Humans, Microscopy, Fluorescence, Quantum Dots
Abstract

For phenotypic behavior to be understood in the context of cell lineage and local environment, properties of individual cells must be measured relative to population-wide traits. However, the inability to accurately identify, track and measure thousands of single cells via high-throughput microscopy has impeded dynamic studies of cell populations. We demonstrate unique labeling of cells, driven by the heterogeneous random uptake of fluorescent nanoparticles of different emission colors. By sequentially exposing a cell population to different particles, we generated a large number of unique digital codes, which corresponded to the cell-specific number of nanoparticle-loaded vesicles and were visible within a given fluorescence channel. When three colors are used, the assay can self-generate over 17,000 individual codes identifiable using a typical fluorescence microscope. The color-codes provided immediate visualization of cell identity and allowed us to track human cells with a success rate of 78% across image frames separated by 8 h.

URLhttp://dx.doi.org/10.1038/nmeth.3105
DOI10.1038/nmeth.3105
Pubmed

http://www.ncbi.nlm.nih.gov/pubmed/25218182?dopt=Abstract

Alternate JournalNat. Methods
PubMed ID25218182