Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes.
Authors | |
Keywords | |
Abstract | The lysosome degrades and recycles macromolecules, signals to the cytosol and nucleus, and is implicated in many diseases. Here, we describe a method for the rapid isolation of mammalian lysosomes and use it to quantitatively profile lysosomal metabolites under various cell states. Under nutrient-replete conditions, many lysosomal amino acids are in rapid exchange with those in the cytosol. Loss of lysosomal acidification through inhibition of the vacuolar H-adenosine triphosphatase (V-ATPase) increased the luminal concentrations of most metabolites but had no effect on those of the majority of essential amino acids. Instead, nutrient starvation regulates the lysosomal concentrations of these amino acids, an effect we traced to regulation of the mechanistic target of rapamycin (mTOR) pathway. Inhibition of mTOR strongly reduced the lysosomal efflux of most essential amino acids, converting the lysosome into a cellular depot for them. These results reveal the dynamic nature of lysosomal metabolites and that V-ATPase- and mTOR-dependent mechanisms exist for controlling lysosomal amino acid efflux. |
Year of Publication | 2017
|
Journal | Science
|
Volume | 358
|
Issue | 6364
|
Pages | 807-813
|
Date Published | 2017 11 10
|
ISSN | 1095-9203
|
DOI | 10.1126/science.aan6298
|
PubMed ID | 29074583
|
PubMed Central ID | PMC5704967
|
Links | |
Grant list | R01 CA103866 / CA / NCI NIH HHS / United States
T32 GM007287 / GM / NIGMS NIH HHS / United States
P30 CA014051 / CA / NCI NIH HHS / United States
R01 AI047389 / AI / NIAID NIH HHS / United States
R37 AI047389 / AI / NIAID NIH HHS / United States
R01 CA129105 / CA / NCI NIH HHS / United States
|