Evidence of reduced recombination rate in human regulatory domains.

Genome Biol
Authors
Keywords
Abstract

BACKGROUND: Recombination rate is non-uniformly distributed across the human genome. The variation of recombination rate at both fine and large scales cannot be fully explained by DNA sequences alone. Epigenetic factors, particularly DNA methylation, have recently been proposed to influence the variation in recombination rate.

RESULTS: We study the relationship between recombination rate and gene regulatory domains, defined by a gene and its linked control elements. We define these links using expression quantitative trait loci (eQTLs), methylation quantitative trait loci (meQTLs), chromatin conformation from publicly available datasets (Hi-C and ChIA-PET), and correlated activity links that we infer across cell types. Each link type shows a "recombination rate valley" of significantly reduced recombination rate compared to matched control regions. This recombination rate valley is most pronounced for gene regulatory domains of early embryonic development genes, housekeeping genes, and constitutive regulatory elements, which are known to show increased evolutionary constraint across species. Recombination rate valleys show increased DNA methylation, reduced doublestranded break initiation, and increased repair efficiency, specifically in the lineage leading to the germ line. Moreover, by using only the overlap of functional links and DNA methylation in germ cells, we are able to predict the recombination rate with high accuracy.

CONCLUSIONS: Our results suggest the existence of a recombination rate valley at regulatory domains and provide a potential molecular mechanism to interpret the interplay between genetic and epigenetic variations.

Year of Publication
2017
Journal
Genome Biol
Volume
18
Issue
1
Pages
193
Date Published
2017 10 20
ISSN
1474-760X
DOI
10.1186/s13059-017-1308-x
PubMed ID
29058599
PubMed Central ID
PMC5651596
Links
Grant list
R01 GM113708 / GM / NIGMS NIH HHS / United States
U01 HG007610 / HG / NHGRI NIH HHS / United States