You are here

The Journal of neuroscience : the official journal of the Society for Neuroscience DOI:10.1523/JNEUROSCI.3689-12.2013

Identification of Nonvisual Photomotor Response Cells in the Vertebrate Hindbrain.

Publication TypeJournal Article
Year of Publication2013
AuthorsKokel, D, Dunn, TW, Ahrens, MB, Alshut, R, Cheung, CY, Saint-Amant, L, Bruni, G, Mateus, R, van Ham, TJ, Shiraki, T, Fukada, Y, Kojima, D, Yeh, JR, Mikut, R, von Lintig, J, Engert, F, Peterson, RT
JournalThe Journal of neuroscience : the official journal of the Society for Neuroscience
Volume33
Issue9
Pages3834-3843
Date Published2013/02/27
ISSN0270-6474
Abstract

Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.

URLhttp://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=23447595
DOI10.1523/JNEUROSCI.3689-12.2013
Pubmed

http://www.ncbi.nlm.nih.gov/pubmed/23447595?dopt=Abstract