You are here

Proc Natl Acad Sci U S A DOI:10.1073/pnas.1212802109

Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs.

Publication TypeJournal Article
Year of Publication2012
AuthorsAdams, DJ, Dai, M, Pellegrino, G, Wagner, BK, Stern, AM, Shamji, AF, Schreiber, SL
JournalProc Natl Acad Sci U S A
Date Published2012 Sep 18
KeywordsAdenosine Triphosphate, Alkenes, Alleles, Antineoplastic Agents, Apoptosis, Cell Line, Tumor, Dioxolanes, Dose-Response Relationship, Drug, HeLa Cells, Humans, Models, Chemical, Oxidative Stress, Phenotype, Reactive Oxygen Species, Sulfhydryl Compounds

Piperlongumine is a naturally occurring small molecule recently identified to be toxic selectively to cancer cells in vitro and in vivo. This compound was found to elevate cellular levels of reactive oxygen species (ROS) selectively in cancer cell lines. The synthesis of 80 piperlongumine analogs has revealed structural modifications that retain, enhance, and ablate key piperlongumine-associated effects on cells, including elevation of ROS, cancer cell death, and selectivity for cancer cells over nontransformed cell types. Structure/activity relationships suggest that the electrophilicity of the C2-C3 olefin is critical for the observed effects on cells. Furthermore, we show that analogs lacking a reactive C7-C8 olefin can elevate ROS to levels observed with piperlongumine but show markedly reduced cell death, suggesting that ROS-independent mechanisms, including cellular cross-linking events, may also contribute to piperlongumine's induction of apoptosis. In particular, we have identified irreversible protein glutathionylation as a process associated with cellular toxicity. We propose a mechanism of action for piperlongumine that may be relevant to other small molecules having two sites of reactivity, one with greater and the other with lesser electrophilicity.


Alternate JournalProc. Natl. Acad. Sci. U.S.A.
PubMed ID22949699
PubMed Central IDPMC3458345
Grant ListNIGMS-38627 / / PHS HHS / United States
/ / Howard Hughes Medical Institute / United States