You are here

PLoS genetics DOI:10.1371/journal.pgen.1002230

Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

Publication TypeJournal Article
Year of Publication2011
AuthorsAmselem, J, Cuomo, CA, van Kan, JA, Viaud, M, Benito, EP, Couloux, A, Coutinho, PM, de Vries, RP, Dyer, PS, Fillinger, S, Fournier, E, Gout, L, Hahn, M, Wincker, P, Anthouard, V, Chen, Z, Danchin, EG, Dasilva, C, Güldener, U, Henrissat, B, Kodira, C, Mauceli, E, Pearson, M, Poulain, J, Quesneville, H, Yandava, C, Zeng, Q
JournalPLoS genetics
Volume7
Issue8
Pagese1002230
Date Published2011/08/01
ISSN1553-7390
Abstract

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.

URLhttp://dx.plos.org/10.1371/journal.pgen.1002230
DOI10.1371/journal.pgen.1002230
Pubmed

http://www.ncbi.nlm.nih.gov/pubmed/21876677?dopt=Abstract