SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization.

Cancer Cell
Authors
Keywords
Abstract

Tumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates required for biomass generation. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. Mechanistically, SIRT3 mediates metabolic reprogramming by destabilizing hypoxia-inducible factor-1α (HIF1α), a transcription factor that controls glycolytic gene expression. SIRT3 loss increases reactive oxygen species production, leading to HIF1α stabilization. SIRT3 expression is reduced in human breast cancers, and its loss correlates with the upregulation of HIF1α target genes. Finally, we find that SIRT3 overexpression represses glycolysis and proliferation in breast cancer cells, providing a metabolic mechanism for tumor suppression.

Year of Publication
2011
Journal
Cancer Cell
Volume
19
Issue
3
Pages
416-28
Date Published
2011 Mar 08
ISSN
1878-3686
URL
DOI
10.1016/j.ccr.2011.02.014
PubMed ID
21397863
PubMed Central ID
PMC3065720
Links
Grant list
R01 AG032375 / AG / NIA NIH HHS / United States
R01 AG032375-02 / AG / NIA NIH HHS / United States
AG032375 / AG / NIA NIH HHS / United States