You are here

Mol Ecol Resour DOI:10.1111/j.1755-0998.2008.02094.x

Increasing ecological inference from high throughput sequencing of fungi in the environment through a tagging approach.

Publication TypeJournal Article
Year of Publication2008
AuthorsD Taylor, L, Booth, MG, McFarland, JW, Herriott, IC, Lennon, NJ, Nusbaum, C, Marr, TG
JournalMol Ecol Resour
Date Published2008 Jul

High throughput sequencing methods are widely used in analyses of microbial diversity, but are generally applied to small numbers of samples, which precludes characterization of patterns of microbial diversity across space and time. We have designed a primer-tagging approach that allows pooling and subsequent sorting of numerous samples, which is directed to amplification of a region spanning the nuclear ribosomal internal transcribed spacers and partial large subunit from fungi in environmental samples. To test the method for phylogenetic biases, we constructed a controlled mixture of four taxa representing the Chytridiomycota, Zygomycota, Ascomycota and Basidiomycota. Following cloning and colony restriction fragment length polymorphism analysis, we found no significant difference in representation in 19 of the 23 tested primers. We also generated a clone library from two soil DNA extracts using two primers for each extract and compared 456 clone sequences. Community diversity statistics and contingency table tests applied to counts of operational taxonomic units revealed that the two DNA extracts differed significantly, while the pairs of tagged primers from each extract were indistinguishable. Similar results were obtained using UniFrac phylogenetic comparisons. Together, these results suggest that the pig-tagged primers can be used to increase ecological inference in high throughput sequencing projects on fungi.


Alternate JournalMol Ecol Resour
PubMed ID21585882