Scientific Publications

Using expression and genotype to predict drug response in yeast.

Publication TypeJournal Article
AuthorsRuderfer, DM, Roberts DC, Schreiber SL, Perlstein EO, and Kruglyak L.
AbstractPersonalized, or genomic, medicine entails tailoring pharmacological therapies according to individual genetic variation at genomic loci encoding proteins in drug-response pathways. It has been previously shown that steady-state mRNA expression can be used to predict the drug response (i.e., sensitivity or resistance) of non-genotyped mammalian cancer cell lines to chemotherapeutic agents. In a real-world setting, clinicians would have access to both steady-state expression levels of patient tissue(s) and a patient's genotypic profile, and yet the predictive power of transcripts versus markers is not well understood. We have previously shown that a collection of genotyped and expression-profiled yeast strains can provide a model for personalized medicine. Here we compare the predictive power of 6,229 steady-state mRNA transcript levels and 2,894 genotyped markers using a pattern recognition algorithm. We were able to predict with over 70% accuracy the drug sensitivity of 104 individual genotyped yeast strains derived from a cross between a laboratory strain and a wild isolate. We observe that, independently of drug mechanism of action, both transcripts and markers can accurately predict drug response. Marker-based prediction is usually more accurate than transcript-based prediction, likely reflecting the genetic determination of gene expression in this cross.
Year of Publication2009
JournalPloS one
Volume4
Issue9
Pagese6907
Date Published (YYYY/MM/DD)2009/09/04
DOI10.1371/journal.pone.0006907
PubMedhttp://www.ncbi.nlm.nih.gov/pubmed/19730698?dopt=Abstract