Genome editing abrogates angiogenesis in vivo.

Nat Commun
Authors
Keywords
Abstract

Angiogenesis, in which vascular endothelial growth factor receptor (VEGFR) 2 plays an essential role, is associated with a variety of human diseases including proliferative diabetic retinopathy and wet age-related macular degeneration. Here we report that a system of adeno-associated virus (AAV)-mediated clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas)9 from Streptococcus pyogenes (SpCas9) is used to deplete VEGFR2 in vascular endothelial cells (ECs), whereby the expression of SpCas9 is driven by an endothelial-specific promoter of intercellular adhesion molecule 2. We further show that recombinant AAV serotype 1 (rAAV1) transduces ECs of pathologic vessels, and that editing of genomic VEGFR2 locus using rAAV1-mediated CRISPR/Cas9 abrogates angiogenesis in the mouse models of oxygen-induced retinopathy and laser-induced choroid neovascularization. This work establishes a strong foundation for genome editing as a strategy to treat angiogenesis-associated diseases.Abnormal angiogenesis causes many ocular diseases. Here the authors employ CRISPR/Cas9 gene editing technology to silence VEGFR2, a major regulator of angiogenesis, in retinal endothelium and abrogate angiogenesis in the mouse models of oxygen-induced retinopathy and laser-induced choroid neovascularization.

Year of Publication
2017
Journal
Nat Commun
Volume
8
Issue
1
Pages
112
Date Published
2017 07 24
ISSN
2041-1723
DOI
10.1038/s41467-017-00140-3
PubMed ID
28740073
PubMed Central ID
PMC5524639
Links
Grant list
P30 EY003790 / EY / NEI NIH HHS / United States
R01 EY012509 / EY / NEI NIH HHS / United States