Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis.

Cell
Authors
Keywords
Abstract

To better understand the gene regulatory mechanisms that program developmental processes, we carried out simultaneous genome-wide measurements of mRNA, translation, and protein through meiotic differentiation in budding yeast. Surprisingly, we observed that the levels of several hundred mRNAs are anti-correlated with their corresponding protein products. We show that rather than arising from canonical forms of gene regulatory control, the regulation of at least 380 such cases, or over 8% of all measured genes, involves temporally regulated switching between production of a canonical, translatable transcript and a 5' extended isoform that is not efficiently translated into protein. By this pervasive mechanism for the modulation of protein levels through a natural developmental program, a single transcription factor can coordinately activate and repress protein synthesis for distinct sets of genes. The distinction is not based on whether or not an mRNA is induced but rather on the type of transcript produced.

Year of Publication
2018
Journal
Cell
Volume
172
Issue
5
Pages
910-923.e16
Date Published
2018 02 22
ISSN
1097-4172
DOI
10.1016/j.cell.2018.01.035
PubMed ID
29474919
PubMed Central ID
PMC5826577
Links
Grant list
DP2 GM119138 / GM / NIGMS NIH HHS / United States
P50 HG006193 / HG / NHGRI NIH HHS / United States
T32 GM007232 / GM / NIGMS NIH HHS / United States
HHMI / Howard Hughes Medical Institute / United States