The effect of the immunosuppressant FK-506 on alternate pathways of T cell activation.

Eur J Immunol
Authors
Keywords
Abstract

Structurally unrelated, FK-506 and cyclosporin (CsA) bind to and inhibit the action of distinct cytoplasmic receptors, FK-506-binding protein (FKBP) and cyclophilin (CyP), respectively. These receptors, termed immunophilins, share no sequence similarity, and yet both have been demonstrated to be capable of catalyzing the cis-trans isomerization of peptidyl-prolyl bonds (rotamase activity). Because FK-506 and CsA bind to different intracellular target structures, we investigated the spectrum of action of FK-506, in comparison to CsA, on T cell activation. We have shown that FK-506, like CsA, is able to inhibit T cell activation mediated not only by the T cell receptor-CD3 complex, but also via another surface molecule, CD2. T cell proliferation, stimulation of interleukin 2 production, and induction of apoptosis were all sensitive to inhibition by both FK-506 and CsA. With each parameter of activation, FK-506 is approximately 10-100-fold more effective than CsA. In contrast, FK-506 did not affect T cell proliferation induced by anti-CD28 monoclonal antibody in the presence of phorbol 12-myristate 13-acetate. This CD28 pathway, however, was inhibited by a structural homology of FK-506, rapamycin, demonstrating that the mechanism of action of FK-506 has specificity. These data suggest that immunophilins or the complex of drug coupled to immunophilin (i.e. FK-506/FKBP, CsA/CyP) are involved in and regulate selective pathways of T cell stimulation.

Year of Publication
1991
Journal
Eur J Immunol
Volume
21
Issue
2
Pages
439-45
Date Published
1991 Feb
ISSN
0014-2980
DOI
10.1002/eji.1830210228
PubMed ID
1705513
Links
Grant list
AI 28554 / AI / NIAID NIH HHS / United States
CA 39542 / CA / NCI NIH HHS / United States
GM 38627 / GM / NIGMS NIH HHS / United States