Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions.

Mol Cell Biol
Authors
Keywords
Abstract

SH3 domains mediate intracellular protein-protein interactions through the recognition of proline-rich sequence motifs on cellular proteins. Structural analysis of the Src SH3 domain (Src SH3) complexed with proline-rich peptide ligands revealed three binding sites involved in this interaction: two hydrophobic interactions (between aliphatic proline dipeptides in the SH3 ligand and highly conserved aromatic residues on the surface of the SH3 domain), and one salt bridge (between Asp-99 of Src and an Arg three residues upstream of the conserved Pro-X-X-Pro motif in the ligand). We examined the importance of the arginine binding site of SH3 domains by comparing the binding properties of wild-type Src SH3 and Abl SH3 with those of a Src SH3 mutant containing a mutated arginine binding site (D99N) and Abl SH3 mutant constructs engineered to contain an arginine binding site (T98D and T98D/F91Y). We found that the D99N mutation diminished binding to most Src SH3-binding proteins in whole cell extracts; however, there was only a moderate reduction in binding to a small subset of Src SH3-binding proteins (including the Src substrate p68). p68 was shown to contain two Arg-containing Asp-99-dependent binding sites and one Asp-99-independent binding site which lacks an Arg. Moreover, substitution of Asp for Thr-98 in Abl SH3 changed the binding specificity of this domain and conferred the ability to recognize Arg-containing ligands. These results indicate that Asp-99 is important for Src SH3 binding specificity and that Asp-99-dependent binding interactions play a dominant role in Src SH3 recognition of cellular binding proteins, and they suggest the existence of two Src SH3 binding mechanisms, one requiring Asp-99 and the other independent of this residue.

Year of Publication
1995
Journal
Mol Cell Biol
Volume
15
Issue
10
Pages
5627-34
Date Published
1995 Oct
ISSN
0270-7306
PubMed ID
7565714
PubMed Central ID
PMC230813
Links
Grant list
CA27951 / CA / NCI NIH HHS / United States