Specific triggering of the Fas signal transduction pathway in normal human keratinocytes.

J Biol Chem
Authors
Keywords
Abstract

The epidermis is continually exposed to genotoxic injury and requires an efficient mechanism to eliminate genetically altered cells. The membrane receptor, Fas, initiates apoptosis in many cell types, including keratinocytes. Receptor cross-linking is the vital post-ligand binding step in Fas signal transduction, and we have utilized FK1012, capable of oligomerizing proteins engineered to contain the FK506 binding protein (FKBP), to trigger Fas via FKBP-linked receptor cytoplasmic domains in human keratinocytes. An FKBP chimera containing the Fas cytoplasmic domain targeted to the plasma membrane induced an up to 89% decrease in viability of keratinocytes, as reflected by the activity of constitutive promoters, in response to FK1012. Oligomerization of Fas, either with engineered Fas.FKBP by FK1012 or via antibody cross-linking of full-length Fas-induced cellular changes consistent with apoptosis. The lpr Fas point mutation abolished this effect. A Fas.FKBP construct unlinked to the membrane was fully active in this assay. Early developmental age or pre-treatment of cells with GM-CSF, TGF-beta, EGF, KGF, IFN-gamma, or phorbol ester failed to protect against Fas effects. These findings reveal that the Fas signal transduction pathway is active in keratinocytes, requires no induction, and dominantly overrides growth stimuli.

Year of Publication
1996
Journal
J Biol Chem
Volume
271
Issue
49
Pages
31666-9
Date Published
1996 Dec 06
ISSN
0021-9258
PubMed ID
8940187
Links
Grant list
AR/OD4337101 / AR / NIAMS NIH HHS / United States
AR43799 / AR / NIAMS NIH HHS / United States