Chemical transformation of xenobiotics by the human gut microbiota.
Authors | |
Keywords | |
Abstract | The human gut microbiota makes key contributions to the metabolism of ingested compounds (xenobiotics), transforming hundreds of dietary components, industrial chemicals, and pharmaceuticals into metabolites with altered activities, toxicities, and lifetimes within the body. The chemistry of gut microbial xenobiotic metabolism is often distinct from that of host enzymes. Despite their important consequences for human biology, the gut microbes, genes, and enzymes involved in xenobiotic metabolism are poorly understood. Linking these microbial transformations to enzymes and elucidating their biological effects is undoubtedly challenging. However, recent studies demonstrate that integrating traditional and emerging technologies can enable progress toward this goal. Ultimately, a molecular understanding of gut microbial xenobiotic metabolism will guide personalized medicine and nutrition, inform toxicology risk assessment, and improve drug discovery and development. |
Year of Publication | 2017
|
Journal | Science
|
Volume | 356
|
Issue | 6344
|
Date Published | 2017 06 23
|
ISSN | 1095-9203
|
DOI | 10.1126/science.aag2770
|
PubMed ID | 28642381
|
PubMed Central ID | PMC5534341
|
Links | |
Grant list | R01 CA208834 / CA / NCI NIH HHS / United States
T32 GM007598 / GM / NIGMS NIH HHS / United States
HHMI / Howard Hughes Medical Institute / United States
|