Mapping chemical space using molecular descriptors and chemical genetics: deacetylase inhibitors.

Comb Chem High Throughput Screen
Authors
Keywords
Abstract

An objective of chemical genetics is to understand the relationships between the structures of small molecules and their phenotypic effects in intact living systems. We present here the results of a global analysis of a molecular descriptor space constructed using structural descriptors of an aryl 1,3-dioxane-based diversity-oriented synthesis-derived library containing structural biasing elements directed at inhibiting protein deacetylases. Using principal component analysis and three-dimensional visualization, we generated metric space maps with morphological features contributed by different diversity elements within the library. Filtering these maps using phenotypic descriptors derived from measurements of small-molecule activities in an array of cell-based assays revealed different densities of biological activity within specific subspaces. These results provide evidence that certain structural features may be important for conferring potency and selectivity on deacetylase inhibitors with respect to tubulin and histone acetylation. Moreover, these results highlight an example of the importance of using functional measures to assess molecular diversity. Similar analyses of other chemical spaces and activity classes promise to facilitate the development of chemical genetics.

Year of Publication
2004
Journal
Comb Chem High Throughput Screen
Volume
7
Issue
7
Pages
669-76
Date Published
2004 Nov
ISSN
1386-2073
PubMed ID
15578929
Links