DNA-templated organic synthesis and selection of a library of macrocycles.

Science
Authors
Keywords
Abstract

The translation of nucleic acid libraries into corresponding synthetic compounds would enable selection and amplification principles to be applied to man-made molecules. We used multistep DNA-templated organic synthesis to translate libraries of DNA sequences, each containing three "codons," into libraries of sequence-programmed synthetic small-molecule macrocycles. The resulting DNA-macrocycle conjugates were subjected to in vitro selections for protein affinity. The identity of a single macrocycle possessing known target protein affinity was inferred through the sequence of the amplified DNA template surviving the selection. This work represents the translation, selection, and amplification of libraries of nucleic acids encoding synthetic small molecules rather than biological macromolecules.

Year of Publication
2004
Journal
Science
Volume
305
Issue
5690
Pages
1601-5
Date Published
2004 Sep 10
ISSN
1095-9203
DOI
10.1126/science.1102629
PubMed ID
15319493
PubMed Central ID
PMC2814051
Links
Grant list
R01GM065865 / GM / NIGMS NIH HHS / United States
R01 GM065865-03 / GM / NIGMS NIH HHS / United States
R01 GM065865-02 / GM / NIGMS NIH HHS / United States
R01 GM065865-01A2 / GM / NIGMS NIH HHS / United States
R01 GM065865 / GM / NIGMS NIH HHS / United States
R01 GM065865-04 / GM / NIGMS NIH HHS / United States