A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system.

Nat Chem
Authors
Keywords
Abstract

Using a system that accelerates the serendipitous discovery of new reactions by evaluating hundreds of DNA-encoded substrate combinations in a single experiment, we explored a broad range of reaction conditions for new bond-forming reactions. We discovered reactivity that led to a biomolecule-compatible, Ru(II)-catalysed azide-reduction reaction induced by visible light. In contrast to current azide-reduction methods, this reaction is highly chemoselective and is compatible with alcohols, phenols, acids, alkenes, alkynes, aldehydes, alkyl halides, alkyl mesylates and disulfides. The remarkable functional group compatibility and mild conditions of the reaction enabled the azide reduction of nucleic acid and oligosaccharide substrates, with no detectable occurrence of side reactions. The reaction was also performed in the presence of a protein enzyme without the loss of enzymatic activity, in contrast to two commonly used azide-reduction methods. The visible-light dependence of this reaction provides a means of photouncaging functional groups, such as amines and carboxylates, on biological macromolecules without using ultraviolet irradiation.

Year of Publication
2011
Journal
Nat Chem
Volume
3
Issue
2
Pages
146-53
Date Published
2011 Feb
ISSN
1755-4349
DOI
10.1038/nchem.932
PubMed ID
21258388
PubMed Central ID
PMC3078041
Links
Grant list
R01 GM065865-08 / GM / NIGMS NIH HHS / United States
R01GM065865 / GM / NIGMS NIH HHS / United States
R01 GM065865-03 / GM / NIGMS NIH HHS / United States
R01 GM065865-07 / GM / NIGMS NIH HHS / United States
R01 GM065865-05A1 / GM / NIGMS NIH HHS / United States
R01 GM065865-02 / GM / NIGMS NIH HHS / United States
R01 GM065865-01A2 / GM / NIGMS NIH HHS / United States
Howard Hughes Medical Institute / United States
R01 GM065865-06S1 / GM / NIGMS NIH HHS / United States
R01 GM065865-06 / GM / NIGMS NIH HHS / United States
R01 GM065865 / GM / NIGMS NIH HHS / United States
R01 GM065865-04 / GM / NIGMS NIH HHS / United States