NF-κB induces miR-148a to sustain TGF-β/Smad signaling activation in glioblastoma.

Mol Cancer
Authors
Keywords
Abstract

BACKGROUND: Inflammatory cytokines and transforming growth factor-β (TGF-β) are mutually inhibitory. However, hyperactivation of nuclear factor-κB (NF-κB) and TGF-β signaling both emerge in glioblastoma. Here, we report microRNA-148a (miR-148a) overexpression in glioblastoma and that miR-148a directly suppressed Quaking (QKI), a negative regulator of TGF-β signaling.

METHODS: We determined NF-κB and TGF-β/Smad signaling activity using pNF-κB-luc, pSMAD-luc, and control plasmids. The association between an RNA-induced silencing complex and QKI, mitogen-inducible gene 6 (MIG6), S-phase kinase-associated protein 1 (SKP1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was tested with microribonucleoprotein immunoprecipitation and real-time PCR. Xenograft tumors were established in the brains of nude mice.

RESULTS: QKI suppression induced an aggressive phenotype of glioblastoma cells both in vitro and in vivo. Interestingly, we found that NF-κB induced miR-148a expression, leading to enhanced-strength and prolonged-duration TGF-β/Smad signaling. Notably, these findings were consistent with the significant correlation between miR-148a levels with NF-κB hyperactivation and activated TGF-β/Smad signaling in a cohort of human glioblastoma specimens.

CONCLUSIONS: These findings uncover a plausible mechanism for NF-κB-sustained TGF-β/Smad activation via miR-148a in glioblastoma, and may suggest a new target for clinical intervention in human cancer.

Year of Publication
2015
Journal
Mol Cancer
Volume
14
Pages
2
Date Published
2015 Feb 11
ISSN
1476-4598
DOI
10.1186/1476-4598-14-2
PubMed ID
25971746
PubMed Central ID
PMC4429406
Links