Deep generative design of RNA aptamers using structural predictions.

Nature computational science
Authors
Abstract

RNAs represent a class of programmable biomolecules capable of performing diverse biological functions. Recent studies have developed accurate RNA three-dimensional structure prediction methods, which may enable new RNAs to be designed in a structure-guided manner. Here, we develop a structure-to-sequence deep learning platform for the de novo generative design of RNA aptamers. We show that our approach can design RNA aptamers that are predicted to be structurally similar, yet sequence dissimilar, to known light-up aptamers that fluoresce in the presence of small molecules. We experimentally validate several generated RNA aptamers to have fluorescent activity, show that these aptamers can be optimized for activity in silico, and find that they exhibit a mechanism of fluorescence similar to that of known light-up aptamers. Our results demonstrate how structural predictions can guide the targeted and resource-efficient design of new RNA sequences.

Year of Publication
2024
Journal
Nature computational science
Date Published
11/2024
ISSN
2662-8457
DOI
10.1038/s43588-024-00720-6
PubMed ID
39506080
Links