Introducing a G-Makassar variant in HSCs by in vivo base editing treats sickle cell disease in mice.

Molecular therapy : the journal of the American Society of Gene Therapy
Authors
Abstract

Precise repair of the pathogenic mutation in hematopoietic stem cells (HSCs) represents an ideal cure for patients with sickle cell disease (SCD). Here, we demonstrated correction of the SCD phenotype by converting the sickle mutation codon (GTG) into a benign G-Makassar variant (GCG) using in vivo base editing in HSCs. We demonstrated successful production of helper-dependent adenoviral vectors expressing an all-in-one base editor mapping to the sickle mutation site. In HSC-enriched cells from SCD patients, transduction with the base editing vector in vitro resulted in 35% GTG > GCG conversion and phenotypic improvements of derived red blood cells. After ex vivo transduction of HSCs from a SCD mouse model and subsequent transplantation, we achieved an average of 88% editing at the target site in transplanted mice. Importantly, in vivo HSC base editing followed by selection generated 24.5% Makassar variant in long-term repopulating HSCs of SCD mice. The treated animals demonstrated correction of disease hallmarks without showing noticeable side effects. Off-target analyses at top-scored genomic sites revealed no off-target editing. This in vivo approach requires only one non-integrating vector, only intravenous/subcutaneous injections, and minimal in vivo selection. This technically simple approach has the potential for scalable applications in resource-limiting regions where SCD is prevalent.

Year of Publication
2024
Journal
Molecular therapy : the journal of the American Society of Gene Therapy
Date Published
10/2024
ISSN
1525-0024
DOI
10.1016/j.ymthe.2024.10.018
PubMed ID
39489920
Links