An AAV capsid reprogrammed to bind human transferrin receptor mediates brain-wide gene delivery.
Authors | |
Abstract | Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an adeno-associated virus (AAV) capsid, BI-hTFR1, that binds human transferrin receptor (TfR1), a protein expressed on the blood-brain barrier (BBB). BI-hTFR1 was actively transported across human brain endothelial cells and, relative to AAV9, provided 40-50 times greater reporter expression in the CNS of human knock-in mice. The enhanced tropism was CNS-specific and absent in wild type mice. When used to deliver , mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared to AAV9. These findings establish BI-hTFR1 as a potential vector for human CNS gene therapy. |
Year of Publication | 2024
|
Journal | Science (New York, N.Y.)
|
Pages | eadm8386
|
Date Published | 05/2024
|
ISSN | 1095-9203
|
DOI | 10.1126/science.adm8386
|
PubMed ID | 38753766
|
Links |