You are here

Cell Stem Cell DOI:10.1016/j.stem.2017.07.015

Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia.

Publication TypeJournal Article
Year of Publication2017
AuthorsTothova, Z, Krill-Burger, JM, Popova, KD, Landers, CC, Sievers, QL, Yudovich, D, Belizaire, R, Aster, JC, Morgan, EA, Tsherniak, A, Ebert, BL
JournalCell Stem Cell
Volume21
Issue4
Pages547-555.e8
Date Published2017 Oct 05
ISSN1875-9777
Abstract

Hematologic malignancies are driven by combinations of genetic lesions that have been difficult to model in human cells. We used CRISPR/Cas9 genome engineering of primary adult and umbilical cord blood CD34(+) human hematopoietic stem and progenitor cells (HSPCs), the cells of origin for myeloid pre-malignant and malignant diseases, followed by transplantation into immunodeficient mice to generate genetic models of clonal hematopoiesis and neoplasia. Human hematopoietic cells bearing mutations in combinations of genes, including cohesin complex genes, observed in myeloid malignancies generated immunophenotypically defined neoplastic clones capable of long-term, multi-lineage reconstitution and serial transplantation. Employing these models to investigate therapeutic efficacy, we found that TET2 and cohesin-mutated hematopoietic cells were sensitive to azacitidine treatment. These findings demonstrate the potential for generating genetically defined models of human myeloid diseases, and they are suitable for examining the biological consequences of somatic mutations and the testing of therapeutic agents.

DOI10.1016/j.stem.2017.07.015
Pubmed

http://www.ncbi.nlm.nih.gov/pubmed/28985529?dopt=Abstract

Alternate JournalCell Stem Cell
PubMed ID28985529