You are here

Nat Cell Biol DOI:10.1038/s41556-022-01005-8

A general approach to identify cell-permeable and synthetic anti-CRISPR small molecules.

Publication TypeJournal Article
Year of Publication2022
AuthorsLim, D, Zhou, Q, Cox, KJ, Law, BK, Lee, M, Kokkonda, P, Sreekanth, V, Pergu, R, Chaudhary, SK, Gangopadhyay, SA, Maji, B, Lai, S, Amako, Y, Thompson, DB, Subramanian, HKK, Mesleh, MF, Dančík, V, Clemons, PA, Wagner, BK, Woo, CM, Church, GM, Choudhary, A
JournalNat Cell Biol
Date Published2022 Nov 17

The need to control the activity and fidelity of CRISPR-associated nucleases has resulted in a demand for inhibitory anti-CRISPR molecules. The small-molecule inhibitor discovery platforms available at present are not generalizable to multiple nuclease classes, only target the initial step in the catalytic activity and require high concentrations of nuclease, resulting in inhibitors with suboptimal attributes, including poor potency. Here we report a high-throughput discovery pipeline consisting of a fluorescence resonance energy transfer-based assay that is generalizable to contemporary and emerging nucleases, operates at low nuclease concentrations and targets all catalytic steps. We applied this pipeline to identify BRD7586, a cell-permeable small-molecule inhibitor of SpCas9 that is twofold more potent than other inhibitors identified to date. Furthermore, unlike the reported inhibitors, BRD7586 enhanced SpCas9 specificity and its activity was independent of the genomic loci, DNA-repair pathway or mode of nuclease delivery. Overall, these studies describe a general pipeline to identify inhibitors of contemporary and emerging CRISPR-associated nucleases.


Alternate JournalNat Cell Biol
PubMed ID36396978
Grant ListN66001-17-2-4055 / / United States Department of Defense | Defense Advanced Research Projects Agency (DARPA) /