A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease.
Authors | |
Keywords | |
Abstract | Scaling of CRISPR-Cas9 technology in human pluripotent stem cells (hPSCs) represents an important step for modeling complex disease and developing drug screens in human cells. However, variables affecting the scaling efficiency of gene editing in hPSCs remain poorly understood. Here, we report a standardized CRISPR-Cas9 approach, with robust benchmarking at each step, to successfully target and genotype a set of psychiatric disease-implicated genes in hPSCs and provide a resource of edited hPSC lines for six of these genes. We found that transcriptional state and nucleosome positioning around targeted loci was not correlated with editing efficiency. However, editing frequencies varied between different hPSC lines and correlated with genomic stability, underscoring the need for careful cell line selection and unbiased assessments of genomic integrity. Together, our step-by-step quantification and in-depth analyses provide an experimental roadmap for scaling Cas9-mediated editing in hPSCs to study psychiatric disease, with broader applicability for other polygenic diseases. |
Year of Publication | 2017
|
Journal | Stem Cell Reports
|
Volume | 9
|
Issue | 4
|
Pages | 1315-1327
|
Date Published | 2017 10 10
|
ISSN | 2213-6711
|
DOI | 10.1016/j.stemcr.2017.09.006
|
PubMed ID | 29020615
|
PubMed Central ID | PMC5639480
|
Links |