Multiscale profiling of protease activity in cancer.
Authors | |
Keywords | |
Abstract | Diverse processes in cancer are mediated by enzymes, which most proximally exert their function through their activity. High-fidelity methods to profile enzyme activity are therefore critical to understanding and targeting the pathological roles of enzymes in cancer. Here, we present an integrated set of methods for measuring specific protease activities across scales, and deploy these methods to study treatment response in an autochthonous model of Alk-mutant lung cancer. We leverage multiplexed nanosensors and machine learning to analyze in vivo protease activity dynamics in lung cancer, identifying significant dysregulation that includes enhanced cleavage of a peptide, S1, which rapidly returns to healthy levels with targeted therapy. Through direct on-tissue localization of protease activity, we pinpoint S1 cleavage to the tumor vasculature. To link protease activity to cellular function, we design a high-throughput method to isolate and characterize proteolytically active cells, uncovering a pro-angiogenic phenotype in S1-cleaving cells. These methods provide a framework for functional, multiscale characterization of protease dysregulation in cancer. |
Year of Publication | 2022
|
Journal | Nat Commun
|
Volume | 13
|
Issue | 1
|
Pages | 5745
|
Date Published | 2022 Oct 03
|
ISSN | 2041-1723
|
DOI | 10.1038/s41467-022-32988-5
|
PubMed ID | 36192379
|
PubMed Central ID | PMC9530178
|
Links | |
Grant list | P30-CA14051 / U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
P30-ES002109 / U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
T32GM007287 / U.S. Department of Health & Human Services | National Institutes of Health (NIH)
|