Multiscale profiling of protease activity in cancer.

Nat Commun
Authors
Keywords
Abstract

Diverse processes in cancer are mediated by enzymes, which most proximally exert their function through their activity. High-fidelity methods to profile enzyme activity are therefore critical to understanding and targeting the pathological roles of enzymes in cancer. Here, we present an integrated set of methods for measuring specific protease activities across scales, and deploy these methods to study treatment response in an autochthonous model of Alk-mutant lung cancer. We leverage multiplexed nanosensors and machine learning to analyze in vivo protease activity dynamics in lung cancer, identifying significant dysregulation that includes enhanced cleavage of a peptide, S1, which rapidly returns to healthy levels with targeted therapy. Through direct on-tissue localization of protease activity, we pinpoint S1 cleavage to the tumor vasculature. To link protease activity to cellular function, we design a high-throughput method to isolate and characterize proteolytically active cells, uncovering a pro-angiogenic phenotype in S1-cleaving cells. These methods provide a framework for functional, multiscale characterization of protease dysregulation in cancer.

Year of Publication
2022
Journal
Nat Commun
Volume
13
Issue
1
Pages
5745
Date Published
2022 Oct 03
ISSN
2041-1723
DOI
10.1038/s41467-022-32988-5
PubMed ID
36192379
PubMed Central ID
PMC9530178
Links
Grant list
P30-CA14051 / U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
P30-ES002109 / U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
T32GM007287 / U.S. Department of Health & Human Services | National Institutes of Health (NIH)