Predicting cell health phenotypes using image-based morphology profiling.

Mol Biol Cell
Authors
Keywords
Abstract

Genetic and chemical perturbations impact diverse cellular phenotypes, including multiple indicators of cell health. These readouts reveal toxicity and antitumorigenic effects relevant to drug discovery and personalized medicine. We developed two customized microscopy assays, one using four targeted reagents and the other three targeted reagents, to collectively measure 70 specific cell health phenotypes including proliferation, apoptosis, reactive oxygen species, DNA damage, and cell cycle stage. We then tested an approach to predict multiple cell health phenotypes using Cell Painting, an inexpensive and scalable image-based morphology assay. In matched CRISPR perturbations of three cancer cell lines, we collected both Cell Painting and cell health data. We found that simple machine learning algorithms can predict many cell health readouts directly from Cell Painting images, at less than half the cost. We hypothesized that these models can be applied to accurately predict cell health assay outcomes for any future or existing Cell Painting dataset. For Cell Painting images from a set of 1500+ compound perturbations across multiple doses, we validated predictions by orthogonal assay readouts. We provide a web app to browse predictions: http://broad.io/cell-health-app. Our approach can be used to add cell health annotations to Cell Painting datasets.

Year of Publication
2021
Journal
Mol Biol Cell
Volume
32
Issue
9
Pages
995-1005
Date Published
2021 04 19
ISSN
1939-4586
DOI
10.1091/mbc.E20-12-0784
PubMed ID
33534641
PubMed Central ID
PMC8108524
Links
Grant list
R35 GM122547 / GM / NIGMS NIH HHS / United States
U01 CA176058 / CA / NCI NIH HHS / United States