Single-molecule decoding of combinatorially modified nucleosomes.

Science
Authors
Keywords
Abstract

Different combinations of histone modifications have been proposed to signal distinct gene regulatory functions, but this area is poorly addressed by existing technologies. We applied high-throughput single-molecule imaging to decode combinatorial modifications on millions of individual nucleosomes from pluripotent stem cells and lineage-committed cells. We identified definitively bivalent nucleosomes with concomitant repressive and activating marks, as well as other combinatorial modification states whose prevalence varies with developmental potency. We showed that genetic and chemical perturbations of chromatin enzymes preferentially affect nucleosomes harboring specific modification states. Last, we combined this proteomic platform with single-molecule DNA sequencing technology to simultaneously determine the modification states and genomic positions of individual nucleosomes. This single-molecule technology has the potential to address fundamental questions in chromatin biology and epigenetic regulation.

Year of Publication
2016
Journal
Science
Volume
352
Issue
6286
Pages
717-21
Date Published
2016 May 06
ISSN
1095-9203
DOI
10.1126/science.aad7701
PubMed ID
27151869
PubMed Central ID
PMC4904710
Links
Grant list
U54 HG006991 / HG / NHGRI NIH HHS / United States
R44HG005279 / HG / NHGRI NIH HHS / United States
Howard Hughes Medical Institute / United States