Rusu V, Hoch E, Mercader JM, et al. Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms. Cell. 2017;170(1):199-212.e20. doi:10.1016/j.cell.2017.06.011.PubMedGoogle ScholarDOI
Diabetes
Flannick J, Florez JC. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat Rev Genet. 2016;17(9):535-49. doi:10.1038/nrg.2016.56.PubMedGoogle ScholarDOI
Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41-7. doi:10.1038/nature18642.PubMedGoogle ScholarDOI
Dirice E, Walpita D, Vetere A, et al. Inhibition of DYRK1A Stimulates Human β-Cell Proliferation. Diabetes. 2016;65(6):1660-71. doi:10.2337/db15-1127.PubMedGoogle ScholarDOI
Lane JM, Chang A-M, Bjonnes AC, et al. Impact of Common Diabetes Risk Variant in MTNR1B on Sleep, Circadian, and Melatonin Physiology. Diabetes. 2016;65(6):1741-51. doi:10.2337/db15-0999.PubMedGoogle ScholarDOI
Hivert M-F, Christophi CA, Franks PW, et al. Lifestyle and Metformin Ameliorate Insulin Sensitivity Independently of the Genetic Burden of Established Insulin Resistance Variants in Diabetes Prevention Program Participants. Diabetes. 2016;65(2):520-6. doi:10.2337/db15-0950.PubMedGoogle ScholarDOI
Walford GA, Colomo N, Todd JN, et al. The study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH): design of a pharmacogenetic resource for type 2 diabetes. PLoS One. 2015;10(3):e0121553. doi:10.1371/journal.pone.0121553.PubMedGoogle ScholarDOI
Kang S, Tsai LT, Zhou Y, et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat Cell Biol. 2015;17(1):44-56. doi:10.1038/ncb3080.PubMedGoogle ScholarDOI
Flannick J, Thorleifsson G, Beer NL, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46(4):357-63. doi:10.1038/ng.2915.PubMedGoogle ScholarDOI