Rusu V, Hoch E, Mercader JM, et al. Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms. Cell. 2017;170(1):199-212.e20. doi:10.1016/j.cell.2017.06.011PubMedGoogle ScholarDOI
Diabetes
Flannick J, Florez JC. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat Rev Genet. 2016;17(9):535-49. doi:10.1038/nrg.2016.56PubMedGoogle ScholarDOI
Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41-7. doi:10.1038/nature18642PubMedGoogle ScholarDOI
Dirice E, Walpita D, Vetere A, et al. Inhibition of DYRK1A Stimulates Human β-Cell Proliferation. Diabetes. 2016;65(6):1660-71. doi:10.2337/db15-1127PubMedGoogle ScholarDOI
Lane JM, Chang AM, Bjonnes AC, et al. Impact of Common Diabetes Risk Variant in MTNR1B on Sleep, Circadian, and Melatonin Physiology. Diabetes. 2016;65(6):1741-51. doi:10.2337/db15-0999PubMedGoogle ScholarDOI
Hivert MF, Christophi CA, Franks PW, et al. Lifestyle and Metformin Ameliorate Insulin Sensitivity Independently of the Genetic Burden of Established Insulin Resistance Variants in Diabetes Prevention Program Participants. Diabetes. 2016;65(2):520-6. doi:10.2337/db15-0950PubMedGoogle ScholarDOI
Walford GA, Colomo N, Todd JN, et al. The study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH): design of a pharmacogenetic resource for type 2 diabetes. PLoS One. 2015;10(3):e0121553. doi:10.1371/journal.pone.0121553PubMedGoogle ScholarDOI
Kang S, Tsai LT, Zhou Y, et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat Cell Biol. 2015;17(1):44-56. doi:10.1038/ncb3080PubMedGoogle ScholarDOI
Flannick J, Thorleifsson G, Beer NL, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46(4):357-63. doi:10.1038/ng.2915PubMedGoogle ScholarDOI