Rusu V, Hoch E, Mercader JM, et al. Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms. Cell. 2017;170(1):199-212.e20. doi:10.1016/j.cell.2017.06.011Google ScholarDOIPubMed
Diabetes
Flannick J, Florez JC. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat Rev Genet. 2016;17(9):535-49. doi:10.1038/nrg.2016.56Google ScholarDOIPubMed
Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41-7. doi:10.1038/nature18642Google ScholarDOIPubMed
Dirice E, Walpita D, Vetere A, et al. Inhibition of DYRK1A Stimulates Human β-Cell Proliferation. Diabetes. 2016;65(6):1660-71. doi:10.2337/db15-1127Google ScholarDOIPubMed
Lane JM, Chang AM, Bjonnes AC, et al. Impact of Common Diabetes Risk Variant in MTNR1B on Sleep, Circadian, and Melatonin Physiology. Diabetes. 2016;65(6):1741-51. doi:10.2337/db15-0999Google ScholarDOIPubMed
Hivert MF, Christophi CA, Franks PW, et al. Lifestyle and Metformin Ameliorate Insulin Sensitivity Independently of the Genetic Burden of Established Insulin Resistance Variants in Diabetes Prevention Program Participants. Diabetes. 2016;65(2):520-6. doi:10.2337/db15-0950Google ScholarDOIPubMed
Walford GA, Colomo N, Todd JN, et al. The study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH): design of a pharmacogenetic resource for type 2 diabetes. PLoS One. 2015;10(3):e0121553. doi:10.1371/journal.pone.0121553Google ScholarDOIPubMed
Kang S, Tsai LT, Zhou Y, et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat Cell Biol. 2015;17(1):44-56. doi:10.1038/ncb3080Google ScholarDOIPubMed
Flannick J, Thorleifsson G, Beer NL, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46(4):357-63. doi:10.1038/ng.2915Google ScholarDOIPubMed