Research Roundup: September 20, 2019

Discerning drivers and passengers in cancer, locating loci for DKD, overcoming exhaustion in T cells, and more.

Kelly Davidson
Credit: Kelly Davidson

Welcome to the September 20, 2019 installment of Research Roundup, a recurring snapshot of recent studies published by scientists at the Broad Institute and their collaborators.

Genetic predisposition unveiled in diabetic kidney disease

Past research suggests that diabetic kidney disease (DKD) is heritable, but until recently, the genetic basis of DKD was unknown. By studying the genetics of nearly 20,000 individuals with type 1 diabetes, an international team of researchers led by Joanne Cole, instiute members Jose Florez and Joel Hirschhorn in the Program in Medical and Population Genetics, and others discovered 16 new genetic regions linked to DKD. These regions may provide critical insights into the biology of DKD and help identify potential therapeutic and prevention targets. Read more in the Journal of the American Society of Nephrology and a Broad news story.

Are you a driver or passenger?

Using genetic data from around 10,000 patients, Julian Hess, associate member Michael Lawrence, institute member Gad Getz (all in the Cancer Program), and their colleagues have developed a model that accurately separates cancer driver hotspot mutations from passenger ones. Using their model, they found that many mutations in hotspots in the genome are in fact passengers rather than drivers as previously thought. The model was rigorously vetted to show that it doesn’t generate the false positives that have plagued older models. Read more in Cancer Cell and in a Broad news story.

How to energize tired T cells

In cancer and chronic viral infections, CD8+ T cells become exhausted — they lose their ability to proliferate and to kill tumor and infected cells. Institute member Arlene Sharpe, associate member W. Nicholas Haining, and their collaborators have found a possible way to boost the cell-killing abilities of some of these tired cells. They identified a phosphatase, PTPN2, that regulates the generation of the exhausted Tim-3+ subpopulation. Deleting the Ptpn2 gene in CD8+ T cells increased their number, cytotoxicity, and anti-tumor responses. The team concludes that PTPN2 in immune cells is a promising drug target for cancer immunotherapy. Read more in Nature Immunology.

Roots of CLL resistance and relapse revealed

Targeted inhibitors like venetoclax have changed the treatment landscape for B cell cancers, but many patients relapse. Romain Guièze and institue member Catherine Wu in the Cancer Program worked with colleagues at Dana-Farber Cancer Institute and in the Broad’s Proteomics Platform, Metabolism Program, and Genetic Perturbation Platform to identify the roots of venetoclax resistance in chronic lymphocytic leukemia. Reporting in Cancer Cell, they found that cells that can evade venetoclax treatment show overexpression of MCL-1 and altered cellular energy metabolism, suggesting that combination therapies could treat B cell cancers while avoiding resistance.

To learn more about research conducted at the Broad, visit, and keep an eye on