
Math 253y – Problem Set 3

Due on Thursday, May 8

Problem 1. (a) Order statistics of i.i.d. uniforms. Let U1, . . . , Un be independent with Uniform(0, 1)
distribution and let V n

k be the kth smallest number in {U1, . . . , Un}. Let Tn be the time of the
nth arrival in a rate λ Poisson process. Show that

(V n
1 , . . . , V

n
n ) L= (T1/Tn+1, . . . , Tn/Tn+1).

One can use this result to study the order statistics and their spacings. Set λ = 1 and let
V n

0 = 0, V n
n+1 = 1.

(b) nV n
k
L→ Tk (Smirnov, 1949).

(c) n−1#{k : n(V n
k − V n

k−1) > x} → e−x in probability (Weiss, 1955).

(d) (n/ log n) maxk(V n
k − V n

k−1)→ 1 in probability.

(e) n2 mink(V n
k − V n

k−1) L→ T1.

Problem 2. (a) Poisson thinning. Let N have Poisson distribution with mean λ and let ξ1, ξ2, . . .
be an independent i.i.d. sequence with P(ξn = i) = pi for i = 1, . . . , k. Let

Ni = #{n ≤ N : Xn = i}, i = 1, . . . , k.

Show that N1, . . . , Nk are independent and Ni is Poisson with mean λpi.

(b) A Poisson process on a measure space (S,S, µ) is a random map m : S → {0, 1, . . .} that for
each ω is a measure, and that has the following property: if A1, . . . , An are disjoint sets with
µ(Ai) < ∞, then m(A1), . . . ,m(Ak) are independent Poissons with means µ(A1), . . . , µ(Ak).
One calls µ the mean measure of the process. Prove such an object exists by giving an explicit
construction.

Hint: First consider the case µ(S) < ∞ and make use of Poisson thinning. How might one
extend the construction to infinite measure spaces?

One recovers the familiar Poisson process as the case S = [0,∞), S = Borel sets, µ = Lebesgue
measure; we described it in terms of the counting function Nt = m

(
[0, t]

)
, t ≥ 0.

Problem 3. (a) Let G ⊂ F be σ-subfields and X a r.v. with finite variance. Show that

E(X −EX|F)2 + E(EX|F −EX|G)2 = E(X −EX|G)2.

Dropping the second term on the left yields an interesting inequality. Geometrically it says the
larger the subspace, the closer the projection; statistically it says the more information, the
smaller the mean square error.

(b) Let Var(X|F) = EX2|F − (EX|F)2. Show that

Var(X) = EVar(X|F) + Var(EX|F).

(c) Let Y1, Y2, . . . be i.i.d. with mean µ and variance σ2, N an independent nonnegative integer-
valued r.v. with EN2 <∞, and X = Y1 + · · ·+ YN . Show that

Var(X) = σ2EN + µ2 Var(N).

For intuition on this formula, think about the two special cases in which N or Y is constant.
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Problem 4. Let ξn,k be i.i.d. with P(ξn,k = 2) = p and P(ξn,k = 0) = 1 − p for some 0 < p < 1.
Define the branching process Xn by X0 = 1 and

Xn+1 =
Xn∑
k=1

ξn,k.

(a) For which values of p is Xn a martingale? sub-martingale? super-martingale?

(b) Show that Mn = (2p)−nXn is a martingale.

(c) Prove that if p ≤ 1/2 then a.s. Xn → 0, i.e. the population dies out.

(d) Prove that if p > 1/2 then with positive probability limMn > 0. Hint: Use 3(c).

(e) What is the survival probability in the latter case?

Problem 5. Asymmetric simple random walk. Fix 0 < p < 1/2, let X1, X2, . . . be i.i.d. with
P(X1 = 1) = p and P(X1 = −1) = 1− p, and consider Sn = X1 + · · ·+Xn.

(a) Find γ > 1 so that Mn = γSn is a martingale.

(b) For integers a < 0 < b, let T = inf
{
n : Sn ∈ {a, b}

}
. Show that ET <∞.

(c) Compute P(ST = b).

(d) Determine the distribution of supn Sn.

(e) Now let T = inf{n : Sn = a} and compute ET . Hint: Use the martingale Sn +(1−2p)n. Justify
all steps.

Problem 6. Consider the proverbial monkey at a typewriter, typing an i.i.d. sequence of letters
uniformly distributed in {A, . . . ,Z}. What is the expected amount of time (in keystrokes) until he
first consecutively types “ABRACADABRA”?

Hint: Suppose a new gambler arrives on the scene just before each keystroke. He bets $1 that the
next letter will be “A”. If he loses, he leaves; if he wins, the house pays him $26 (which is fair) and
he immediately bets it all on the event that the next letter will be “B”. If he loses, he leaves; if he
wins, he stakes his fortune of $262 on the event that the next letter will be “R”, and so on through
“ABRACADABRA”. Now consider the house’s net winnings at the relevant time. Fully justify any
use of optional stopping!

Problem 7. (a) Recall Pólya’s urn scheme. An urn initially contains balls of two (or more) colors;
a ball is drawn at random and replaced along with an additional ball of the same color; this
procedure is then repeated. Prove that the sequence of added balls is exchangeable, i.e. its law
is invariant under finite permutations.

(b) Suppose X1, X2, . . . are exchangeable real-valued random variables with EX2
1 <∞. Prove that

EX1X2 ≥ 0.

Problem 8. Brownian bridge. Let
(
B(t), t ≥ 0) be a Brownian motion on the line.

(a) Prove that the process
(
X(t), 0 ≤ t ≤ 1

)
defined by X(t) = B(t)−tB(1) is independent of B(1).

(b) Argue informally that the law of
(
X(t), 0 ≤ t ≤ 1

)
can be interpreted as that of

(
B(t), 0 ≤ t ≤ 1

)
conditioned on the event

{
B(1) = 0

}
. There is no need for additional computations.

(c)
(
X(t), 0 ≤ t ≤ 1

)
is called a standard Brownian bridge. Show it is a mean zero Gaussian process

and compute its covariance structure EX(s)X(t), 0 ≤ s ≤ t ≤ 1. Show that the increments are
not independent.
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(d) Fluctuations of the empirical distribution function. Let U1, U2, . . . be independent Uniform(0, 1)
and let Nn(t) = #{k ≤ n : Uk ≤ t}. Recall that almost surely Nn(t)/n → t, in fact uniformly
over 0 ≤ t ≤ 1. Prove that(

Nn(t)− nt√
n

, 0 ≤ t ≤ 1
)
L→
(
X(t), 0 ≤ t ≤ 1

)
in finite dimensional distributions.

(Donsker’s theorem asserts convergence in law with respect to a much stronger topology.)

Problem 9. Let T =
⋂

t>0 σ
(
B(s), s > t

)
be the tail field of Brownian motion; we saw that it

is trivial under Px for any x ∈ Rd, i.e. a tail event A ∈ T has Px(A) ∈ {0, 1}. Prove that the
probability does not depend on the starting point x. Hint: Use the Markov property at t = 1.

Problem 10. Let
(
B(t), t ≥ 0) be a Brownian motion on the line.

(a) Show that, for σ > 0, the process
(
exp(σB(t)− σ2t/2), t ≥ 0

)
is a martingale.

(b) Differentiating with respect to σ at 0, discover martingales that are polynomials in B(t) and t
of degrees 2, 3 and 4.

(c) Let a < 0 < b and T = min
{
t ≥ 0 : B(t) ∈ {a, b}

}
. Compute P0(B(T ) = b), E0T and E0T

2.

(d) Let a, b > 0. Prove that

P0

(
B(t) = at+ b for some t > 0

)
= e−2ab.
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