
Math 253y – Problem Set 2

Due in class on Monday, March 10

Problem 1. A converse to the SLLN: Let X1, X2, . . . be i.i.d. random variables with E |X1| = ∞
and let Sn = X1 + · · ·+Xn. Then

lim sup
|Sn|
n

= ∞ a.s.

Hint: First show the same for |Xn| /n, i.e. that P(|Xn| ≥ Kn i.o.) = 1 for all K > 0.

Problem 2. Given a probability distribution µ ∈ P(R), its nth empirical distribution is the random
distribution

µn =
1
n

n∑
i=1

δXi

where X1, . . . , Xn are i.i.d. with law µ.

(a) For any Borel set B ∈ B(R), we have µn(B)→ µ(B) a.s.

(b) Let Fn, F be the respective distribution functions of µn, µ. Show that in fact Fn → F uniformly:

sup
x∈R
|Fn(x)− F (x)| → 0 a.s.

Hint: Let ε > 0 and choose an integer k > 1/ε and numbers x1 ≤ · · · ≤ xk−1 such that
F (xj−) ≤ j/k ≤ F (xj) for j = 1, . . . , k − 1.

Problem 3. Let X1, X2, . . . be i.i.d. with P(X1 = ±1) = 1/2 and consider the random signed
harmonic series

∞∑
n=1

Xn

n
.

(a) The series converges almost surely.

(b) Let S be its sum. Finitely many tosses never determine the sign of S with certainty:

P(S > 0, X1 = x1, . . . , Xn = xn) > 0

for every n and x1, . . . , xn ∈ {±1}, and likewise with S < 0.

(c) Construct a Lebesgue measurable subset A ⊂ [0, 1] such that

0 < m(A ∩ I) < m(I)

for every proper interval I ⊂ [0, 1]. (Use the above! No messing around with fat Cantor sets etc.)

Problem 4. (a) Convergence in probability implies convergence in law: if Xn
p→ X then Xn

L→ X.

(b) The converse doesn’t even make sense in general if Xn are defined on different probability spaces.
It holds, however, when X is a constant c ∈ R, i.e. X = c a.s.



Problem 5. If Xn, Yn are independent for 1 ≤ n ≤ ∞ and Xn
L→ X∞ and Yn

L→ Y∞, then Xn+Yn
L→

X∞ + Y∞.

Problem 6. Let
(
X

(n)
1 , . . . , X

(n)
n

)
be uniformly distributed on the unit sphere {x ∈ Rn : |x| = 1}.

(There is a unique probability measure supported on the sphere that is invariant under orthogonal
transformations of Rn.)

(a) How might you generate such a (pseudo-)random vector on a computer? Assume you can generate
independent random variables with any of the usual named distributions.

(b) We have
√
nX

(n)
1

L→ χ, a standard normal random variable.

(c) Jointly for each k,
√
n
(
X

(n)
1 , . . . , X

(n)
k

) L→ (χ1, . . . , χk), k independent standard normals.

“The coordinates of a random point on an infinite-dimensional sphere are independent normals!”

Problem 7. Let µ ∈ P(R) and ϕ(t) =
∫
eitxµ(dx), the characteristic function of µ.

(a) If
∫
|x|n dx <∞ then ϕ has a continuous derivative of order n given by ϕ(n)(t) =

∫
(ix)neitxµ(dx).

(b) For the standard normal distribution µ(dx) = (2π)−1/2e−x
2/2dx one has ϕ(t) = e−t

2/2.

(c) If X is standard normal then EX2n = (2n)!/2nn! = (2n− 1)(2n− 3) · · · 3 · 1 =: (2n− 1)!!.

Problem 8. Atoms and characteristic functions. Let µ ∈ P(R) and ϕ(t) =
∫
eitxµ(dx).

(a) Imitate the proof of the inversion formula to show that

µ({a}) = lim
T→∞

1
2T

∫ T

−T
e−itaϕ(t) dt.

(b) Show that ∑
x

µ({x})2 = lim
T→∞

1
2T

∫ T

−T
|ϕ(t)|2 dt.

Hint: Let X,Y be independent with law µ and consider X − Y .

(c) Conclude that if ϕ(t)→ 0 as |t| → ∞ then µ has no atoms.

(d) Let X1, X2, . . . be i.i.d. with P(X1 = 0) = P(X1 = 1) = 1/2; then
∑
n 2Xn/3n has the Cantor

distribution. Compute its characteristic function ϕ and consider ϕ(3kπ), k = 0, 1, 2, . . . to argue
that the converse to (c) is false.

(e) The Riemann-Lebesgue lemma: If µ(dx) = f(x)dx is absolutely continuous then lim|t|→∞ ϕ(t) = 0.

Problem 9. Let X1, X2, . . . be i.i.d. with mean 0 and variance 1 and let Sn = X1 + · · ·+Xn.

(a) Show that P(supSn =∞) > 0. Hint: Consider the event {Sn ≥
√
n i.o.}.

(b) Conclude that supSn = ∞ a.s. by arguing that the event {supSn = ∞} is in the tail σ-field of
the sequence (Xn).

Problem 10. Let X,Y be independent random variables with joint law invariant under rotations Rθ
of R2 about the origin: Rθ(X,Y ) L= (X,Y ).

(a) Assuming further that X,Y have finite variance, conclude that they are normally distributed.
(For the rotational invariance assumption, invariance under Rπ/4 is actually enough!)

(b) Deduce the same conclusion without assuming finite variance.


