Math 253y - Problem Set 2

Due in class on Monday, March 10

Problem 1. A converse to the $S L L N$: Let X_{1}, X_{2}, \ldots be i.i.d. random variables with $\mathbf{E}\left|X_{1}\right|=\infty$ and let $S_{n}=X_{1}+\cdots+X_{n}$. Then

$$
\limsup \frac{\left|S_{n}\right|}{n}=\infty \quad \text { a.s. }
$$

Hint: First show the same for $\left|X_{n}\right| / n$, i.e. that $\mathbf{P}\left(\left|X_{n}\right| \geq K n\right.$ i.o. $)=1$ for all $K>0$.

Problem 2. Given a probability distribution $\mu \in \mathcal{P}(\mathbb{R})$, its nth empirical distribution is the random distribution

$$
\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}
$$

where X_{1}, \ldots, X_{n} are i.i.d. with law μ.
(a) For any Borel set $B \in \mathcal{B}(\mathbb{R})$, we have $\mu_{n}(B) \rightarrow \mu(B)$ a.s.
(b) Let F_{n}, F be the respective distribution functions of μ_{n}, μ. Show that in fact $F_{n} \rightarrow F$ uniformly:

$$
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \rightarrow 0 \quad \text { a.s. }
$$

Hint: Let $\varepsilon>0$ and choose an integer $k>1 / \varepsilon$ and numbers $x_{1} \leq \cdots \leq x_{k-1}$ such that $F\left(x_{j}-\right) \leq j / k \leq F\left(x_{j}\right)$ for $j=1, \ldots, k-1$.

Problem 3. Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathbf{P}\left(X_{1}= \pm 1\right)=1 / 2$ and consider the random signed harmonic series

$$
\sum_{n=1}^{\infty} \frac{X_{n}}{n}
$$

(a) The series converges almost surely.
(b) Let S be its sum. Finitely many tosses never determine the sign of S with certainty:

$$
\mathbf{P}\left(S>0, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)>0
$$

for every n and $x_{1}, \ldots, x_{n} \in\{ \pm 1\}$, and likewise with $S<0$.
(c) Construct a Lebesgue measurable subset $A \subset[0,1]$ such that

$$
0<m(A \cap I)<m(I)
$$

for every proper interval $I \subset[0,1]$. (Use the above! No messing around with fat Cantor sets etc.)

Problem 4. (a) Convergence in probability implies convergence in law: if $X_{n} \xrightarrow{p} X$ then $X_{n} \xrightarrow{\mathcal{L}} X$.
(b) The converse doesn't even make sense in general if X_{n} are defined on different probability spaces. It holds, however, when X is a constant $c \in \mathbb{R}$, i.e. $X=c$ a.s.

Problem 5. If X_{n}, Y_{n} are independent for $1 \leq n \leq \infty$ and $X_{n} \xrightarrow{\mathcal{L}} X_{\infty}$ and $Y_{n} \xrightarrow{\mathcal{L}} Y_{\infty}$, then $X_{n}+Y_{n} \xrightarrow{\mathcal{L}}$ $X_{\infty}+Y_{\infty}$.

Problem 6. Let $\left(X_{1}^{(n)}, \ldots, X_{n}^{(n)}\right)$ be uniformly distributed on the unit sphere $\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$. (There is a unique probability measure supported on the sphere that is invariant under orthogonal transformations of \mathbb{R}^{n}.)
(a) How might you generate such a (pseudo-)random vector on a computer? Assume you can generate independent random variables with any of the usual named distributions.
(b) We have $\sqrt{n} X_{1}^{(n)} \xrightarrow{\mathcal{L}} \chi$, a standard normal random variable.
(c) Jointly for each $k, \sqrt{n}\left(X_{1}^{(n)}, \ldots, X_{k}^{(n)}\right) \xrightarrow{\mathcal{L}}\left(\chi_{1}, \ldots, \chi_{k}\right), k$ independent standard normals.
"The coordinates of a random point on an infinite-dimensional sphere are independent normals!"
Problem 7. Let $\mu \in \mathcal{P}(\mathbb{R})$ and $\varphi(t)=\int e^{i t x} \mu(d x)$, the characteristic function of μ.
(a) If $\int|x|^{n} d x<\infty$ then φ has a continuous derivative of order n given by $\varphi^{(n)}(t)=\int(i x)^{n} e^{i t x} \mu(d x)$.
(b) For the standard normal distribution $\mu(d x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2} d x$ one has $\varphi(t)=e^{-t^{2} / 2}$.
(c) If X is standard normal then $\mathbf{E} X^{2 n}=(2 n)!/ 2^{n} n!=(2 n-1)(2 n-3) \cdots 3 \cdot 1=:(2 n-1)!!$.

Problem 8. Atoms and characteristic functions. Let $\mu \in \mathcal{P}(\mathbb{R})$ and $\varphi(t)=\int e^{i t x} \mu(d x)$.
(a) Imitate the proof of the inversion formula to show that

$$
\mu(\{a\})=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} e^{-i t a} \varphi(t) d t
$$

(b) Show that

$$
\sum_{x} \mu(\{x\})^{2}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|\varphi(t)|^{2} d t
$$

Hint: Let X, Y be independent with law μ and consider $X-Y$.
(c) Conclude that if $\varphi(t) \rightarrow 0$ as $|t| \rightarrow \infty$ then μ has no atoms.
(d) Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathbf{P}\left(X_{1}=0\right)=\mathbf{P}\left(X_{1}=1\right)=1 / 2$; then $\sum_{n} 2 X_{n} / 3^{n}$ has the Cantor distribution. Compute its characteristic function φ and consider $\varphi\left(3^{k} \pi\right), k=0,1,2, \ldots$ to argue that the converse to (c) is false.
(e) The Riemann-Lebesgue lemma: If $\mu(d x)=f(x) d x$ is absolutely continuous then $\lim _{|t| \rightarrow \infty} \varphi(t)=0$.

Problem 9. Let X_{1}, X_{2}, \ldots be i.i.d. with mean 0 and variance 1 and let $S_{n}=X_{1}+\cdots+X_{n}$.
(a) Show that $\mathbf{P}\left(\sup S_{n}=\infty\right)>0$. Hint: Consider the event $\left\{S_{n} \geq \sqrt{n}\right.$ i.o. $\}$.
(b) Conclude that $\sup S_{n}=\infty$ a.s. by arguing that the event $\left\{\sup S_{n}=\infty\right\}$ is in the tail σ-field of the sequence $\left(X_{n}\right)$.

Problem 10. Let X, Y be independent random variables with joint law invariant under rotations R_{θ} of \mathbb{R}^{2} about the origin: $R_{\theta}(X, Y) \stackrel{\mathcal{L}}{=}(X, Y)$.
(a) Assuming further that X, Y have finite variance, conclude that they are normally distributed. (For the rotational invariance assumption, invariance under $R_{\pi / 4}$ is actually enough!)
(b) Deduce the same conclusion without assuming finite variance.

