Math 253y – Problem Set 1

Due in class on Wednesday, February 19

Problem 1. Consider the following two probability spaces:

$$(\{0,1\}^{\mathbb{N}}, \sigma(\omega_n, n \in \mathbb{N}), \prod_{\mathbb{N}}(\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1)),$$

i.e. coin tossing or product Bernoulli measure, and

$$([0,1],\mathcal{B},m),$$

i.e. uniform or Lebesgue measure on the unit interval. Show that binary expansion

$$\{0,1\}^{\mathbb{N}} \to [0,1] (\omega_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} \omega_n 2^{-n}$$

induces an isomorphism between them in the sense that the mapping is bijective up to a null set, measurable in both directions, and measure preserving. *Hint:* The π -system lemma may be useful.

Problem 2. That a collection \mathcal{A} generates a σ -field \mathcal{F} does not in general guarantee that the values of \mathbf{P} on \mathcal{A} determine its values on \mathcal{F} . Give an example of a measurable space (Ω, \mathcal{F}) , a collection \mathcal{A} with $\mathcal{F} = \sigma(\mathcal{A})$, and probability measures \mathbf{P}, \mathbf{Q} such that $\mathbf{P}(\mathcal{A}) = \mathbf{Q}(\mathcal{A})$ for $\mathcal{A} \in \mathcal{A}$ but $\mathbf{P} \neq \mathbf{Q}$. *Hint:* This can be done on a space with four outcomes!

Problem 3. Let X be a (real-valued) random variable.

- (a) If $1 \le q \le p \le \infty$ and $X \in L^p$ then $X \in L^q$; in fact, $||X||_q \le ||X||_p$.
- (b) $\lim_{p\to\infty} \|X\|_p = \|X\|_{\infty}$, including that both sides are finite simultaneously.

Problem 4. Suppose $X \ge 0$ and $\mathbf{E}X^2 < \infty$. Prove that

$$\mathbf{P}(X>0) \geq \frac{(\mathbf{E}X)^2}{\mathbf{E}X^2}.$$

Problem 5. Discrete distributions: Suppose a random variable X takes values in a countable set S (where the associated σ -field consists simply of all subsets). Then one can express the distribution of X in terms of the probability mass function $p_X(x) = \mathbf{P}(X = x)$, since $\mathbf{P}(X \in A) = \sum_{x \in A} p_X(x)$.

- (a) What basic fact was used in the last paragraph?
- (b) S-valued random variables X_1, \ldots, X_n are independent if and only if their joint probability mass function on S^n factors as the product of their marginal ones:

$$p_{(X_1,\ldots,X_n)}(x_1,\ldots,x_n) = p_{X_1}(x_1)\cdots p_{X_n}(x_n)$$

(c) If integer-valued random variables X, Y are independent, express p_{X+Y} in terms of p_X , p_Y .

Problem 6. Absolutely continuous distributions: A random vector $X = (X_1, \ldots, X_n)$ has absolutely continuous distribution on \mathbb{R}^n if $\mathbf{P}(X \in A) = 0$ whenever A is Lebesgue-null. In this case there is an integrable function f_X , its probability density function, which gives its distribution via the formula $\mathbf{P}(X \in A) = \int_A f_X$ for every Borel set A. In fact

$$f_X(x) = \lim_{\varepsilon \searrow 0} \frac{1}{(2\varepsilon)^n} \mathbf{P} (|X_i - x_i| < \varepsilon, \ i = 1, \dots, n)$$

for Lebesgue-a.e. $x \in \mathbb{R}^n$.

- (a) What two theorems were used in the last paragraph?
- (b) In this setting each coordinate X_i is absolutely continuous on \mathbb{R} . Express f_{X_i} in terms of f_X .
- (c) The coordinates are independent if and only if their joint density factors as the product of their marginal densities:

$$f_X(x) = f_{X_1}(x_1) \cdots f_{X_n}(x_n).$$

- (d) If random variables X, Y are absolutely continuous and independent then X + Y is absolutely continuous. Express f_{X+Y} in terms of f_X , f_Y .
- (e) Give an example of absolutely continuous random variables X, Y such that X + Y is not absolutely continuous. Describe the joint distribution of (X, Y) on \mathbb{R}^2 .

Problem 7. Let A_1, A_2, \ldots be independent events. Show that

- (a) $\mathbf{1}_{A_n} \to 0$ in probability if and only if $\mathbf{P}(A_n) \to 0$.
- (b) $\mathbf{1}_{A_n} \to 0$ almost surely if and only if $\sum \mathbf{P}(A_n) < \infty$.

Problem 8. We saw that almost sure convergence implies convergence in probability.

- (a) Give a simple example to show that the converse is false.
- (b) In the special case where Ω is countable and \mathcal{F} consists of all its subsets, show that the two modes of convergence are equivalent.

The last two problems are more challenging but they are classic examples.

Problem 9. Coupon collector's problem: Let $X_1^{(n)}, X_2^{(n)}, \ldots$ be i.i.d. uniform on $\{1, \ldots, n\}$. Let $T_n = \min\{t : \#\{X_1^{(n)}, \ldots, X_t^{(n)}\} = n\},$

the "time to collect all n coupons". Prove that

$$\frac{T_n}{n\log n} \to 1 \qquad \text{in probability.}$$

Hint: Consider the intervals between successive times when you collect new coupons.

Problem 10. Head runs: Let X_1, X_2, \ldots be i.i.d. uniform on $\{0, 1\}$ (coin tossing). Let

$$\ell_n = \max\{m : X_n = X_{n-1} = \dots = X_{n-m+1} = 1\},\$$

the length of the run of heads at time n, and

$$L_n = \max_{m \le n} \ell_m,$$

the length of the longest run by time n. Prove that

$$\frac{L_n}{\log_2 n} \to 1 \qquad \text{a.s.}$$