
Math 253y – Problem Set 1

Due in class on Wednesday, February 19

Problem 1. Consider the following two probability spaces:(
{0, 1}N, σ

(
ωn, n ∈ N

)
,
∏

N
(

1
2δ0 + 1

2δ1
))
,

i.e. coin tossing or product Bernoulli measure, and(
[0, 1], B, m

)
,

i.e. uniform or Lebesgue measure on the unit interval. Show that binary expansion

{0, 1}N → [0, 1](
ωn

)
n∈N 7→

∑
n∈N

ωn2−n

induces an isomorphism between them in the sense that the mapping is bijective up to a null set,
measurable in both directions, and measure preserving. Hint: The π-system lemma may be useful.

Problem 2. That a collection A generates a σ-field F does not in general guarantee that the values
of P on A determine its values on F . Give an example of a measurable space (Ω,F), a collection
A with F = σ(A), and probability measures P,Q such that P(A) = Q(A) for A ∈ A but P 6= Q.
Hint: This can be done on a space with four outcomes!

Problem 3. Let X be a (real-valued) random variable.

(a) If 1 ≤ q ≤ p ≤ ∞ and X ∈ Lp then X ∈ Lq; in fact, ‖X‖q ≤ ‖X‖p.

(b) limp→∞ ‖X‖p = ‖X‖∞, including that both sides are finite simultaneously.

Problem 4. Suppose X ≥ 0 and EX2 <∞. Prove that

P(X > 0) ≥ (EX)2

EX2
.

Problem 5. Discrete distributions: Suppose a random variable X takes values in a countable set S
(where the associated σ-field consists simply of all subsets). Then one can express the distribution
of X in terms of the probability mass function pX(x) = P(X = x), since P(X ∈ A) =

∑
x∈A pX(x).

(a) What basic fact was used in the last paragraph?

(b) S-valued random variables X1, . . . , Xn are independent if and only if their joint probability mass
function on Sn factors as the product of their marginal ones:

p(X1,...,Xn)(x1, . . . , xn) = pX1(x1) · · · pXn(xn)

(c) If integer-valued random variables X, Y are independent, express pX+Y in terms of pX , pY .



Problem 6. Absolutely continuous distributions: A random vector X = (X1, . . . , Xn) has absolutely
continuous distribution on Rn if P(X ∈ A) = 0 whenever A is Lebesgue-null. In this case there is an
integrable function fX , its probability density function, which gives its distribution via the formula
P(X ∈ A) =

∫
A
fX for every Borel set A. In fact

fX(x) = lim
ε↘0

1
(2ε)n

P
(
|Xi − xi| < ε, i = 1, . . . , n

)
for Lebesgue-a.e. x ∈ Rn.

(a) What two theorems were used in the last paragraph?

(b) In this setting each coordinate Xi is absolutely continuous on R. Express fXi in terms of fX .

(c) The coordinates are independent if and only if their joint density factors as the product of their
marginal densities:

fX(x) = fX1(x1) · · · fXn
(xn).

(d) If random variables X, Y are absolutely continuous and independent then X + Y is absolutely
continuous. Express fX+Y in terms of fX , fY .

(e) Give an example of absolutely continuous random variables X,Y such that X + Y is not abso-
lutely continuous. Describe the joint distribution of (X,Y ) on R2.

Problem 7. Let A1, A2, . . . be independent events. Show that

(a) 1An
→ 0 in probability if and only if P(An)→ 0.

(b) 1An
→ 0 almost surely if and only if

∑
P(An) <∞.

Problem 8. We saw that almost sure convergence implies convergence in probability.

(a) Give a simple example to show that the converse is false.

(b) In the special case where Ω is countable and F consists of all its subsets, show that the two
modes of convergence are equivalent.

The last two problems are more challenging but they are classic examples.

Problem 9. Coupon collector’s problem: Let X(n)
1 , X

(n)
2 , . . . be i.i.d. uniform on {1, . . . , n}. Let

Tn = min
{
t : #{X(n)

1 , . . . , X
(n)
t } = n

}
,

the “time to collect all n coupons”. Prove that
Tn

n log n
→ 1 in probability.

Hint: Consider the intervals between successive times when you collect new coupons.

Problem 10. Head runs: Let X1, X2, . . . be i.i.d. uniform on {0, 1} (coin tossing). Let

`n = max {m : Xn = Xn−1 = · · · = Xn−m+1 = 1},

the length of the run of heads at time n, and

Ln = max
m≤n

`m,

the length of the longest run by time n. Prove that
Ln

log2 n
→ 1 a.s.


