Big Data Analysis with Apache Spark

Matei Zaharia

MIT - Databricks
Outline

The big data problem
MapReduce
Apache Spark
How people are using it
The Big Data Problem

Data is growing faster than computing power

Growing data sources
 » Mostly machine generated

Cheap storage

Stalling CPU speeds
Examples

Facebook’s daily logs: 60 TB

1000 genomes project: 200 TB

Google web index: 10+ PB

Cost of 1 TB of disk: $25

Time to read 1 TB from disk: 6 hours (50 MB/s)
The Big Data Problem

Single machine can no longer process or even store all the data!

Only solution is to distribute over large clusters
How do we program this thing?
Traditional Network Programming

Message-passing between nodes

Really hard to do at scale:
 » How to split problem across nodes?
 » How to deal with failures?
 » Even worse: stragglers (node is not failed, but slow)
Data-Parallel Models

Restrict the programming interface so that the system can do more automatically

“Here’s an operation, run it on all of the data”
 » I don’t care where it runs (you schedule that)
 » In fact, feel free to run it twice on different nodes

Biggest example: MapReduce
MapReduce

First widely popular programming model for data-intensive apps on clusters

Published by Google in 2004
 » Processes 20 PB of data/day

Popularized by open-source Hadoop project
MapReduce Programming Model

Data type: key-value records

Map function:

$$(K_{in}, V_{in}) \rightarrow \text{list}(K_{inter}, V_{inter})$$

Reduce function:

$$(K_{inter}, \text{list}(V_{inter})) \rightarrow \text{list}(K_{out}, V_{out})$$
Example: Word Count

```python
def map(line):
    foreach word in line.split():
        output(word, 1)

def reduce(key, values):
    output(key, sum(values))
```
Word Count Execution

Input
the quick brown fox
the fox ate the mouse
how now brown cow

Map
the, 1
brown, 1
fox, 1

Shuffle & Sort
the, 1
fox, 1
the, 1

Reduce
brown, 2
fox, 2
how, 1
now, 1
the, 3

Output
ate, 1
cow, 1
mouse, 1
quick, 1
MapReduce Execution

Automatically split work into many small *tasks*

Send tasks to nodes based on data locality

Automatically recover from failures
Summary

Data-parallel programming models let systems automatically manage much of execution:
 » Assigning work, load balancing, fault recovery

But... the story doesn’t end here!
Outline

The big data problem

MapReduce

Apache Spark

How people are using it
Limitations of MapReduce

Programmability: most applications require higher level functions than map / reduce
 » E.g. statistics, matrix multiply, graph search
 » Google ads pipeline had 20 MR steps

Performance: inefficient to combine multiple MapReduce steps into complex programs
Apache Spark

Programming model that generalizes MapReduce to support more applications
 » Adds efficient, in-memory data sharing

Large library of built-in functions

APIs in Python, Java, Scala, R
Spark Programmability

WordCount in MapReduce:

```cpp
#include "mapreduce/mapreduce.h"

// User's map function
class SplitWords: public Mapper {
public:
  virtual void Map(const MapInput& input)
  {
    const string& text = input.value();
    const int n = text.size();
    for (int i = 0; i < n; ) {
      // Skip past leading whitespace
      while (i < n && isspace(text[i])) i++;
      // Find word end
      int start = i;
      while (i < n && !isspace(text[i])) i++;
      if (start < i)
        Emit(text.substr(start, i - start), "1");
    }
  }

  REGISTER_MAPPER(SplitWords);
}

// User's reduce function
class Sum: public Reducer {
public:
  virtual void Reduce(ReduceInput* input)
  {
    // Iterate over all entries with the
    // same key and add the values
    int64 value = 0;
    while (!input->done()) {
      value += StringToInt(input->value());
      input->NextValue();
    }
    // Emit sum for input->key()
    Emit(IntToString(value));
  }

  REGISTER_REDUCER(Sum);
}

int main(int argc, char** argv) {
  ParseCommandLineFlags(argc, argv);
  MapReduceSpecification spec;
  for (int i = 1; i < argc; i++) {
    MapReduceInput* in = spec.add_input();
    in->set_format("text");
    in->set_filepattern(argv[i]);
    in->set_mapper_class("SplitWords");
  }

  // Specify the output files
  MapReduceOutput* out = spec.output();
  out->set_filebase("/gfs/test/freq");
  out->set_num_tasks(100);
  out->set_format("text");
  out->set_reducer_class("Sum");
  out->set_combiner_class("Sum");

  // Tuning parameters
  spec.set_machines(2000);
  spec.set_map_megabytes(100);
  spec.set_reduce_megabytes(100);

  // Now run it
  MapReduceResult result;
  if (!MapReduce(spec, &result)) abort();
  return 0;
}
```
Spark Programmability

WordCount in Spark:

```python
define file = spark.textFile("hdfs://...")
define counts = file.flatMap(lambda line: line.split(" "))
                .map(lambda word: (word, 1))
                .reduceByKey(lambda a, b: a+b)

counts.save("out.txt")
```
Spark Performance

K-means Clustering

- Hadoop M/R: 121 sec
- Spark: 4.1 sec

Logistic Regression

- Hadoop M/R: 80 sec
- Spark: 0.96 sec
Programming Model

Write programs in terms of transformations on distributed datasets

Resilient Distributed Datasets (RDDs)
 » Collections of objects that can be stored in memory or disk across a cluster
 » Built via parallel transformations (map, filter, …)
 » Automatically rebuilt on failure
Example: Text Search

Load a large log file into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split('t')[2])
messages.cache()
```

```python
messages.filter(lambda s: "Illumina" in s).count()
messages.filter(lambda s: "Dell" in s).count()
...
```

Result: scaled to 1 TB data in 7 sec (vs 180 sec for on-disk data)
Fault Recovery

RDDs track *lineage* information that can be used to efficiently reconstruct lost partitions.

Ex: `msgs = textFile.filter(lambda s: s.startswith("ERROR")) .map(lambda s: s.split("\t")[2])`
Example: Logistic Regression

Goal: find line separating two sets of points
Logistic Regression Performance

- First iteration: 80 s
- Further iterations: 5 s
- Per iteration: 110 s

Graph:
- X-axis: Number of Iterations
- Y-axis: Running Time (s)
- Blue bars: Hadoop
- Pink bars: Spark
- First iteration: 80 s
- Further iterations: 5 s
Supported Operators

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td></td>
</tr>
<tr>
<td>filter</td>
<td></td>
</tr>
<tr>
<td>groupBy</td>
<td></td>
</tr>
<tr>
<td>union</td>
<td></td>
</tr>
<tr>
<td>join</td>
<td></td>
</tr>
<tr>
<td>leftOuterJoin</td>
<td></td>
</tr>
<tr>
<td>rightOuterJoin</td>
<td></td>
</tr>
<tr>
<td>reduce</td>
<td></td>
</tr>
<tr>
<td>count</td>
<td></td>
</tr>
<tr>
<td>fold</td>
<td></td>
</tr>
<tr>
<td>reduceByKey</td>
<td></td>
</tr>
<tr>
<td>groupByKey</td>
<td></td>
</tr>
<tr>
<td>cogroup</td>
<td></td>
</tr>
<tr>
<td>flatMap</td>
<td></td>
</tr>
<tr>
<td>take</td>
<td></td>
</tr>
<tr>
<td>first</td>
<td></td>
</tr>
<tr>
<td>partitionBy</td>
<td></td>
</tr>
<tr>
<td>pipe</td>
<td></td>
</tr>
<tr>
<td>distinct</td>
<td></td>
</tr>
<tr>
<td>save</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Built-in Libraries

SQL and DataFrames
Spark Streaming
MLlib
GraphX
Spark Core (RDDs)

Largest integrated standard library for big data
Combining Libraries

Load data using SQL
ctx.jsonFile("tweets.json").registerTempTable("tweets")
points = ctx.sql("select latitude, longitude from tweets")

Train a machine learning model
model = KMeans.train(points, 10)

Apply it to a stream
sc.twitterStream(...)
 .map(lambda t: (model.predict(t.location), 1))
 .reduceByWindow("5s", lambda a, b: a+b)
Summary

Libraries + function-based interface let users write parallel programs similar to sequential code.

Can use Spark interactively in Python, R, etc.
Spark Community

1000+ deployments, clusters up to 8000 nodes
Applications

Large-scale machine learning
Analysis of neuroscience data
Network security
SQL and data clustering
Trends & recommendations
Programming Languages

2014 Languages Used
- Scala: 84%
- Java: 38%
- Python: 38%

2015 Languages Used
- Scala: 71%
- Java: 31%
- Python: 58%
- R: 18%
Libraries Used

- Core: 95%
- SQL: 75%
- Streaming: 46%
- MLlib: 54%
- GraphX: 18%

Fraction of Users
Example: Neuroscience

HHMI Janelia Farm analyzes data from full-brain imaging of neural activity

Larval zebrafish + Light-sheet imaging = 2 TB / hour of data
Data Analysis
Streaming code does clustering, dimens. reduction on 80-node cluster

Images from Jeremy Freeman
Example: Berkeley ADAM

Stores and processes reads with standard big data tools and formats

25% smaller than BAM(!), linear scale-up

bdgenomics.org
GATK4/Spark

https://github.com/broadinstitute/gatk

GATK4 is a Spark-native application for genetic sequencing analyses. Currently in alpha testing, with good scalability to hundreds of cores, e.g.:

1. MarkDuplicates – took hours to run and was single-core only, now GATK4 runs in 3 minutes (on 30 GB exome)

2. Depth of coverage – took days to run on 200GB whole genome, now GATK4 runs in 4 minutes

3. Whole genome metrics (e.g., insert-size distribution) runs in 2-3 minutes on 300GB whole genome
Open-source, modular, scalable platform for statistical genetics in development by the Neale lab at Broad

Combine genetic and phenotypic data to uncover the biology of disease

Built using Scala and Spark, currently in alpha

Wall time of QC pipeline down from weeks to minutes
Conclusion

Apache Spark offers a fast, high-level interface to work with big data based on data-parallel model

Large set of existing libraries

Easy to try on just your laptop!

spark.apache.org
To Learn More

Free MOOCs on edX

Use case videos at Spark Summit

edx.org

spark-summit.org