

Module 2: Overview

Sequencing Workflow

Cluster Generation

- Cluster Generation turns libraries into clonal clusters on a flow cell
- All library preparation protocols result in dsDNA
 - Each sample is treated identically
 - Samples are denatured and hybridized to flow cell
 - Captured sample DNA is used as template for second strand synthesis
 - Second strand is amplified into a clonal cluster
 - The cluster is linearized and active sites are blocked
 - Added sequencing primer provides a site for sequencing by synthesis
- Cluster Station/cBot delivers fluidics and controls temperature

Flow Cell

- Simple workflow
- Clusters are generated in a contained environment (no need for clean rooms)
- Sequencing performed on the clusters on the flow cell

Surface of flow cell coated with a lawn of oligo pairs

Cluster Station/cBot

- Aspirates DNA samples into flow cell
- Automates the formation of amplified clonal clusters from the DNA single molecules

Cluster Generation Workflow

Cluster Generation on cBot

Cluster Generation (v4 Chemistry)

Hybridize Fragment & Extend

Hyb Manifold
Strip Tubes
Hyb Buffer HT1

Denatured Library

Temp Ramp: 96-40°C

Wash Buffer HT2

Amp Premix AMP1

Phusion HFE 90 sec

Temp Ramp: 20°C

NaOH Wash

Wash Buffer HT2

Bridge Amplification

AMP Manifold

Ramp to 60°C

Formamide AT1

Amp Premix APM1

Amp Mix AMX1

Contains BST pol & nucleotides

Formamide AT1

Bridge Amplification

Formamide AT1

Amp Premix APM1

Amp Mix AMX1
Contains BST pol
& nucleotides

35 Cycles
Wash Buffer HT2
Hyb Buffer HT1

Linearization, Blocking & Sequencing Primer Hybridization

AMP Manifold

Hyb Buffer HT1

Temp 20°C

PE Linearization LMX1

Ramp 37.9°C, 30 min

Temp Ramp: 20°C

Wash Buffer HT2

Blocking Mix BMX

38°C, 30 min

60°C, 15 min

20°C, HT2, HT1 Washes 0.1N NaOH

Seq. Primer

60°C, 5 min

20°C, HT2, HT1 Washes

Cluster Generation: Read 2 Turnaround

Resynthesis of the second strand

Best Practices

Cluster Generation

- Store reagents as recommended
 - 9 month shelf life from date of manufacture
 - Track lot numbers and barcodes
- Prepare all reagents fresh before use
 - Mix reagents well
- Use proper recipes and remove unnecessary recipes
- Check fluidics delivery both visually and by weight of reagent delivered
- Ensure that Cluster Station is washed regularly

Best Practices from The Broad Institute

Cluster Generation Workflow -- Broad

Cluster Generation Overview

- qPCR: Obtaining optimal cluster density
- Addition of Process Controls
- SYBR QC: Ensure successful amplification before continuing
- ▶ Lab: Various process details can be monitored and standardized

Quantitative PCR (qPCR)

► **GOAL:** Quantitate amplifiable library fragments in order to obtain optimal cluster density without performing a titration flow cell.

Quantitative PCR (qPCR) Overview

Quantitative Real-Time Polymerase Chain Reaction

- ► Fluorescence is detected and measured at each cycle
 - Increases proportional to PCR product
- Library's fluorescence is used to determine its concentration

Quantitative PCR (qPCR) Accuracy

▶ 96 barcoded (indexed) libraries were quantified, normalized, and pooled. qPCR produced more accurate quantitation results, leading to more consistent cluster counts among the libraries.

Quant Method: None (volume)

Fold Difference: 60X % CV: 50.8%

Quant Method:

Pico

Fold Difference: 3.3X % CV: 27.4%

Quant Method: Automated qPCR

Fold Difference: 3.0X % CV: 21.4%

Quantitative PCR (qPCR)

qPCR is designed to quantify only cluster-forming fragments in the sample

- Uses P5 & P7 primers to mimic amplification on the flow cell
- Primers only amplify library fragments with proper adapters

Quantitative PCR (qPCR) Standards

- Using high-quality standards is critical
- Standards' fragment size is critical
 - Ideally, a different set of standards would be used for each library size
 - Library concentration is calculated using size ratio of a monotemplate standard to library* (*size determined by Agilent assay)
- We have had success using two types of standards
 - a) Monotemplate (from KAPA)
 - b) Well-characterized genomic library with predictable clusterforming behavior (PhiX from Illumina)

KAPA Library Quantification

- qPCR-based assay designed specifically for Illumina libraries
- 452bp monotemplate standards
- Multiple different samples 384 well plate = 96 Samples (triplicate)
 - Quants are adjusted to library size: (452/average library size)*Quant)
- Reduce flow cell rework rate due to high or low densities
 - (failed flow cell has 3 or more failed lanes)

KAPA Library Quantification

- Reduction in Variability
 - KAPA standard qPCR vs. in-house standard qPCR
- Low Yielding Library
 - Pico unable to detect DNA
 - KAPA quant: .3nM
 - Successfully sequenced

Quantitative PCR (qPCR) Standards

- Commercial standards work well at large scale (pre-QCd)
- In-house standards work well at small scale if:
 - Standard sets should be made in large batches
 - QC: Test each new batch against the last batch
 - Ensures accuracy and reproducibility
 - Stored at -80°C

Quantitative PCR (qPCR) Specs

Enrichment Curves

- ► Flat for at least 4 cycles
- Should increase, then plateau

Threshold

- Should be above background
- Should be below plateau
- Automatically generated

No-Template (Negative)Control

- Displays low level of enrichment, mostly due to primer dimers
- C_t (Cycle threshold) should be at least 10 cycles after template samples.

- A. Enrichment Curve
- **B.** Threshold
- C. NTC (No Template Control) Enrichment Curve

Quantitative PCR (qPCR) Sample Dilutions

- qPCR requires very low amounts of input DNA
 - "Blow-outs" occur if samples are too concentrated

- ► Two options for dilution of library
 - Dilute to ~10nM (based on fragment size (Agilent) and rough quant (Pico or Agilent))
 - Perform qPCR on several serial dilutions and ignore blow-outs

Quantitative PCR (qPCR) Best Practices

THOROUGH MIXING IS CRITICAL!

- Sample dilutions (vortex and spin)
- Vortex mastermix (even though it contains enzyme)
- Place paper between plate and vortex to keep plate clean
- Always spin plates before removing caps (to avoid cross-contamination or sample loss)

UNIFORMITY

- Use automated deck whenever possible
- Designate a qPCR user to reduce operator-to-operator variability
- Make mastermix in a large tube
- If using a multichannel pipettor, check for uniform volume between tips
- With any pipettor, check for (and be able to recognize) correct volume levels in tips

Control Samples

► **GOAL:** Detect normal and aberrant variation by including a control sample during cluster generation/amplification

Choosing a Control Sample

We currently use one of two types of control samples

Phi X Lane	Internal Controls (ICs)
Create a good crosstalk matrix for use in base-biased samples	Regain "real estate" by adding a small amount to each experimental lane (1/100 reads instead of 1/8 reads)
Well characterized small genome	Synthetic sequences require no error- inducing PCR enrichment
~ 50% GC	~ 50% GC
Simple data analysis	Easily identified monotemplates*
Simple workflow (treat as library)	Control in every lane

*Using Broad-designed pipeline software

Internal Controls (IC) Design

- Randomly-generated, unique synthetic sequences don't align to any genomes (easy to identify)
- ▶ The Internal Controls pool contains 4 monotemplate sequences:
 - Pool contains equal base composition at every cycle.
 - Easily-identified, known sequences allow accurate calculation of error rate at any cycle*.

```
CACGTCACGTGTACGTAGTACGTAC...
TCTAGAGTACAGTGACGAGTGACGA...
GTGCAGTGCGCACATATCACATGCT...
AGATCTCATATCGTCGCTCGTCATG...
```

- ▶ ICs add a level of lane-to-lane control
 - Control fragments are subject to identical chemistry, imaging, and analysis as each lane's experimental sample.

^{*}Covered in more detail in the Working with Data Module

Internal Controls (IC) Preparation

- Cellular reproduction of plasmid (more accurate than PCR amplification)
- IC fragment with final adapter sequence are flanked by unique restriction sites in plasmid
- ICs with adaptors are digested/purified from plasmid
- After final purification, all 4 IC's are quantified (KAPA qPCR) and pooled equimolarly to give even representation of each base at each cycle

▶ GOAL: Visually confirm successful cluster generation and optimal density before continuing with LBPA and sequencing

SYBR Green dye is run through flow cell after cluster generation is complete.

- SYBR intercalates into dsDNA
- May be less mutagenic than ethidium bromide
- Visible clusters using standard microscope
 - Excited by Xenon bulb*
 - Fluoresces @ 500-560λ (green)
 - Visible through FITC filter
 - Clusters visible at 40X magnification
- Will see more in lab module

^{*} Xenon bulb must be changed every 350 hours to prevent explosion risk

- ▶ Visual QC of flow cells: Verify successful amplification and cluster count
 - Too Sparse: Loss of valuable real estate on flow cell
 - Too Dense: Analysis problems
- High density limits ability to accurately count clusters at SYBR step
- Afterward, flow cell can be stored for up to ~1 month

SYBR image → Estimated Cluster #

Cluster Densities (1.6 RTA)

- 1.6 RTA is able to identify many more clusters than previous pipelines
- SYBR QC images are so dense that it is difficult to differentiate between 350,000 and 400,000 clusters/tile
- QPCR accuracy, along with historical data, allow us to pinpoint optimal loading density

LBPA: Linearization, Blocking, Primer Annealing

- Prepare clusters for sequencing
- Use same amplification manifold as in cluster generation
 - Use wash flowcell to run water through manifold
- Ensure proper flow of reagent using Hybridization Buffer
- Immediately place on sequencer

QPCR	
Cluster Amplification	
SYBR QC	
LB/PA	

Cluster Generation – Summary

QPCR

- Using high quality standards is critical
- Determines loading concentration for optimal cluster density

Control Samples

- Phi X simple workflow and good for use on flow cells with base biased samples
- Internal Controls Control in every lane,

SYBR QC

 Determine number of clusters amplified prior to placing on sequencer

Experiment: Compare variation in cluster counts between lanes containing the same E.coli genomic DNA sample (split off at various points in the process):
Library

- Replicate libraries
- Same library, replicate Normalizations
- Same library, same normalization, replicate denaturations
- Same library, same normalization, same denaturation, replicate dilutions
- Same library, same normalization, same denaturation, same dilution
- Problem confirmed: Small-volume pipetting introduces significant variation at each phase between library prep and cluster generation. Inserting variation earlier in the process increases amount of final variation.

Normalization

Denaturation

Dilution "Strip Tube B"

Same Library
Same Normalization
Same Denaturation
Same Dilution
(Aliquotted into different lanes)

Same Library
Same Normalization
Same Denaturation

REPLICATE Dilutions

Same Library

Same Normalization

REPLICATE Denaturations

Same Library

REPLICATE Normalizations

REPLICATE Libraries

Cluster Count By Lane

- Inserting variation earlier in the process between library prep and cluster generation increases final variation in cluster counts.
- ► To reduce small-volume pipetting over time:
 - Use automated qPCR to determine optimal loading concentrations
 - Use automated denaturation
 - Store denatured libraries for re-use

Lab Best Practices – Cluster Station Use

- Reagent Preparation
- ▶ Flow Problems
 - Line clogs, Manifold gaskets, Watch Prime, Wiping Ports
- Cluster Station Maintenance
 - Routine Decon Wash
- Tracking manifold re-use
- Thermal Profile
 - Peltier block failures
- Lab Bench Organization
- Reagent and waste volumes are monitored and tracked for future troubleshooting

Lab Best Practices – SYBR QC

Visualizing clusters on microscope

360000

SYBR image → Estimated Cluster # (Pass/Fail with trained eye)

319000