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Motivation: understand functional metabolic modules of S. cerevisiae at the systems-level _
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Goal: characterize the contribution of two pathways to Central Carbon Metabolism:
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Key genes were selected near the beginning of each pathway (see
stars above) because deleting them was more likely to have the
greatest impact. Our goal was to compare global expression profiles

of mis1A and zwf1A knock out strains compared to wild type. -
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Future Directions

. 557 S 53 ~Combining metabolite profiles with global expression
. N * Growth curves were established to identify where biological time changes occur. The @ P g profiles will allow us to formulate a higher resolution model
eatmap Establish Growth Curve X R PO Sy A ucose: i idati i i iti f th I I
o D £ || ianctieouts bt s st oy nd s el || s
p “Test mutant strains affecting different pathways of Central

from oxidative damage, so inhibiting the Pentose Phosphate Pathway can affect oxidative stress e e e gansyy - g s ot v

S N 8 P wso [ ]
Analyze Pick time p Time ponn_ts of '"_te"eSt were selected fo't study. Biological samples were taken at e - | protection. Oxygen free radicals are generated in the mitochondria causing oxidative stress, e
— selected time points (see growth curves in Results). e amsl) L ir) which may be why mitochondrial ribosome genes were up-regulated in order to recover from
%} Shift(DS) the stress. The Pentose Phosphate Pathway also produces sugars, which may explain why
) *  RNAwas extracted from these samples and the integrity of the RNA was checked before hexose transporters were up-regulated.
! e Literature Cited

further steps were taken, as shown to the right. . N ) B 3
By removing Mls1, the Glyoxylate Cycle is blocked and the cell tries to compensate by importing

Microarray 1 Database,
R . N carbohydrates, explaining why hexose transporters were up-regulated. Mls1 also interacts with 2. KEGG Pathway Database,
* cDNA was made from the RNA, which was then labeled with fluorescent cyanine dyes. the TCA cycle, which is found in the mitochondria. If the cycle was inhibited by the absence of http://www.genome.ad.jp/kegg/pathway.htmi
& Mis1, this could explain why mitochondrial ribosome genes were down-regulated.
* Dyed samples were hybridized on 2 color Agilent microarrays, using midLog as a reference.
S T?fhoverlap oflgfnde expression in the dlffzretnt pattr\‘ways |: vetry |nteriest|ng..The| fact that;ﬂg ACknOWIedgementS
s Make RNA » Thearrays were scanned and the data was sent through numerous computational programs such ofthe uncorrelated genes were common between the mutants reveals previously Unexpecte . ]
N connectivity in the Glyoxylate Cycle and the Pentose Phosphate Pathway. Special thanks to Jenna Pfiffner, Courtney
as Genomica and Matlab to analyze results. French, Michelle Chan, Dawn Thompson, Mark

Stycznsk, Aviv Regey, Megan Rokop, Kate
MacSwain, and Allison Martino




