Mapping and exploring the functions of N^6-methyladenosine in mRNA

Kayla Lee
Summer Research Program in Genomics 2012
RNA and Cell Regulation

- The roles of RNA within a cell include the regulation of genes and the synthesis of proteins

- Post transcriptional modifications:
 - 5' capping
 - 3' polyadenylation
 - RNA splicing
 - Base modifications

- Limited amounts of hypotheses and analytical methods leave many of these modifications uncharacterized
N⁶-methyladenosine (m⁶A)

- Most common, internal base modification on eukaryotic messenger RNA (mRNA)
- Occurs on almost 50% of expressed transcripts within the consensus motif RRACH
 - where R=purine, A=m⁶A, and H=A, C, or U
m6A is highly conserved

Highly conserved between mouse and human genomes and strongly enriched in long exons and near stop codons

Phenotypic observations suggest regulatory role

- Catalyzed by a multi-component conserved enzyme
 - Only known subunit: methyltransferase like 3 (METTL3)

- Silencing of METTL3 leads to:
 - Apoptosis in *Homo sapiens*
 - Impaired gametogenesis in *S. cerevisiae* and *D. melanogaster*
How can we elucidate the functions of m^6A?
Objectives

Map m6A in selected model systems

Pull down associated proteins

Understand m6A in the life cycle of RNA

Understand genome wide trends

Identify unknown components recognizing this modification

How does methylation affect cellular processing?
Mapping of m6A

Intriguing m^6A observations in model systems

<table>
<thead>
<tr>
<th>Selected organisms</th>
<th>Samples</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast
$S.\text{ cerevisiae}$
$ime4\Delta/ime4\Delta$ and wild type</td>
<td>IME4 required for induction of meiosis; increased methylation during sporulation</td>
<td></td>
</tr>
<tr>
<td>Fruit fly
$D.\text{ melanogaster}$
Ovary and body tissues</td>
<td>IME4 homolog expressed in ovaries and testes; $ime4\Delta$ has fused-egg chambers</td>
<td></td>
</tr>
<tr>
<td>Zebrafish
$D.\text{ rerio}$
Developmental time points</td>
<td>Decrease in METTL3 throughout embryonic development</td>
<td></td>
</tr>
</tbody>
</table>

Locate trends on genome-wide m^6A maps
Zebrafish m^6A enrichment show similar conservation to human and mouse genomes
D. melanogaster and **S. cerevisiae** SK1 show signs of enrichment

- **Drosophila** and **S. cerevisiae** show distinctive enrichment peaks throughout the genome

- Does not follow the consensus motif

- Data is currently being replicated
Objectives

Map m^6A in selected model systems

Pull down associated proteins

Understand genome wide trends

Understand m^6A in the life cycle of RNA

Identify unknown components recognizing this modification

How does methylation affect cellular processing?
Pulling down associated proteins

I. Biotinylated RNA fragment preparation

Linearized Plasmid DNA (~100 nt)

In-vitro transcription
T7 RNA Polymerase

Biotinylated UTPs

Methylated RNA

Non-methylated RNA

II. Protein pull down

Add 2 µg RNA to pre-cleared cell lysate

RNA binds to protein

Streptavidin beads pull down proteins bound to RNA fragments

Visualize precipitated proteins on coomassie protein gel
Biotin-methylated RNA show unique protein bands

- Two distinct protein bands are observed in m\(^6\)A + biotin lanes
 - Estimated size: ~49 - 62 kDa
Objectives

1. **Map m⁶A in selected model systems**
 - Understand genome wide trends

2. **Pull down associated proteins**
 - Identify unknown components recognizing this modification

3. **Understand m⁶A in the life cycle of RNA**
 - How does methylation affect cellular processing?
Constructs designed to eliminate consensus sites followed by qPCR

Construct design with endogenous methylation site:

Test 1 (MCM2):

Control 1:

Test 2 (ZFPM1):

Control 2:

Test 3 (CYB561D2):

Control 3:

Transfection

RNA extraction

m^6^-RIP

Construct-specific and Luciferase primer qPCR
Conclusions/Future Directions

• *S. cerevisiae* show distinct peaks of enrichment with a strong tendency to occur at the 3′ end of genes
 - Replicate m^6^A-RIP and continue computational analysis of mapped organisms

• Zebrafish data provides a developmental model of methylation enrichment that shows similar conservation to human and mouse genomes

• Protein mass spectrometry of potential candidates as identified by pull down

• Ensure the constructs and their mutant strains design a system that can selectively methylate
Acknowledgments

Regev and Lander Groups
 Aviv Regev
 Eric Lander
 Schragi Schwartz
 Ivo Wortman
 Dima Ter-Ovanesyan
 Dawn Thompson

Diversity Initiative
 Bruce Birren
 Ebony Smith
 Francie Latour
 Brandon Ogbunu

Summer Research Program in Genomics

Broad Institute