Validation of Gene Expression Signatures Employed in Directed Stem Cell Differentiation with Small Molecule Perturbagens

Charisma N. Garcia
Cancer Genomics
Summer Undergraduate Research Program
What is a stem cell?

- Potential to differentiate into numerous cell types
- Capacity to self-replicate indefinitely
- When in culture, can remain in an undifferentiated state for many generations
Embryonic stem cells

- Source: Inner cell mass of the pre-implantation blastocyst
 - Blastocyst: 4-5 day embryo

NIH stem cell report, 2001
Embryonic stem cells

NIH Stem Cell Report, 2001

PLURIPOTENT

Gastrula

Zygote

Blastocyst

Ectoderm (external layer)
- Skin cells of epidermis
- Neuron of brain
- Pigment cell

Mesoderm (middle layer)
- Cardiac muscle
- Skeletal muscle cells
- Tubule cell of the kidney
- Red blood cells
- Smooth muscle (in gut)

Endoderm (internal layer)
- Pancreatic cell
- Thyroid cell
- Lung cell (alveolar cell)

Germ cells
- Sperm
- Egg
Potential stem cell applications

- Monitoring developmental biology
- Genetic engineering
- Pharmaceutical testing
- Toxicology
- Therapeutic transplants
 - Chronic heart disease
 - End-stage kidney disease
 - Liver failure
 - Cancer
 - Parkinson’s disease
 - Spinal cord injury
 - Multiple sclerosis
 - Alzheimer’s disease
 - Amyotrophic lateral sclerosis
 - Diabetes
 - Skin grafts
 - Purkinje cell degeneration
 - Duchenne’s muscular dystrophy
 - Osteogenesis imperfecta

NIH stem cell report, 2001
Directed differentiation

Using laboratory techniques:

Unspecialized cell

Small molecule perturbagen

Specialized cell

[determined by gene expression signatures, i.e. expression of marker genes]

http://www.stemcellresearchfoundation.org/index.htm
Microarray Gene Expression Profiling of Embryonic Stem Cells and Dissected Embryonic Tissues for Marker Selection
<table>
<thead>
<tr>
<th>Gene Expression Signatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryonic</td>
</tr>
<tr>
<td>Stem cell</td>
</tr>
<tr>
<td>Tcfap2c</td>
</tr>
<tr>
<td>Nr0b1</td>
</tr>
<tr>
<td>Esrrb</td>
</tr>
<tr>
<td>Fbxo15</td>
</tr>
<tr>
<td>Uppl</td>
</tr>
<tr>
<td>Zfp42</td>
</tr>
<tr>
<td>Pou5f1</td>
</tr>
<tr>
<td>Nanog</td>
</tr>
<tr>
<td>Utf1</td>
</tr>
<tr>
<td>Eras</td>
</tr>
<tr>
<td>Tmem46</td>
</tr>
<tr>
<td>Irs4</td>
</tr>
<tr>
<td>Pax9</td>
</tr>
<tr>
<td>Npnt</td>
</tr>
<tr>
<td>Foxa1</td>
</tr>
<tr>
<td>Krt2-7</td>
</tr>
<tr>
<td>Emb</td>
</tr>
<tr>
<td>Tcfcp2l3</td>
</tr>
<tr>
<td>Foxa2</td>
</tr>
</tbody>
</table>
Project Overview

GOAL: Validate gene signatures in tissue culture

1. Start and maintain a mouse embryonic stem cell (mES) line

2. Treat the mES with the chosen compounds, at various dilutions, for 4 days

3. Determine if differentiation occurred by comparing gene expression signatures
Treatments to be tested for differentiation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Hypothesized Target Cell</th>
<th>Germ Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-trans-Retinoic Acid</td>
<td>Neurons</td>
<td>Ectoderm</td>
</tr>
<tr>
<td>5-Azacytidine</td>
<td>Cardiomyocytes</td>
<td>Mesoderm</td>
</tr>
<tr>
<td>Fluoxetine Hydrochloride</td>
<td>Neurons</td>
<td>Ectoderm</td>
</tr>
<tr>
<td>Mitomycin C</td>
<td>Dopamine Neurons</td>
<td>Ectoderm</td>
</tr>
<tr>
<td>Reversine</td>
<td>Myocytes</td>
<td>Mesoderm</td>
</tr>
<tr>
<td>Scriptaid</td>
<td>Induces hemoglobin</td>
<td>Mesoderm</td>
</tr>
</tbody>
</table>

DILUTIONS:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>A</td>
<td>DMSO</td>
</tr>
<tr>
<td>B</td>
<td>DMSO</td>
</tr>
<tr>
<td>C</td>
<td>DMSO</td>
</tr>
<tr>
<td>D</td>
<td>DMSO</td>
</tr>
<tr>
<td>E</td>
<td>DMSO</td>
</tr>
<tr>
<td>F</td>
<td>DMSO</td>
</tr>
<tr>
<td>G</td>
<td>DMSO</td>
</tr>
<tr>
<td>H</td>
<td>DMSO</td>
</tr>
</tbody>
</table>
Ligation-mediated amplification (LMA) & Gene expression-based highthroughput (GE-HTS) experimental overview

Treated cells

RT

ligation

Marker	Expression
1 | probe specific tag
2 | primer site
3 | probe specific tag

Courtesy of Cristian Jitianu
Acknowledgements:

- Todd Golub
- Cristian Jitianu
- Angela Brunache
- Bruce Birren