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Only a small proportion of the somatic mutations found in 
tumor cells drive tumor development1–3, whereas the vast 
majority are functionally neutral passengers that do not confer 

selective advantage to cancer cells4. A major goal of cancer genomics 
is to identify these rare driver mutations amid the myriad passengers5. 
A number of highly sophisticated computational methods have been 
developed to identify driver mutations6–13. Applied to thousands of 
tumor exomes, these methods have contributed greatly to our under-
standing of which genes are involved in carcinogenesis5,11,12,14–16.

Current algorithms generally exploit two features of driver muta-
tions: first, they occur in functionally important genomic positions 
corresponding to amino acids that are critical for the protein func-
tion6–9, and second, they occur in excess over the background muta-
bility of the genome owing to positive selection in the tumor10–13. 
For most positions in the genome, the functional importance is not 
known17,18 and is usually proxied by differences between synony-
mous and nonsynonymous mutations12, the positional clustering of 
mutations7 and bioinformatically predicted scores of functional sig-
nificance8,9. To detect the excess of driver mutations over a carefully 
modeled background, current methods model the regional varia-
tion in the mutation rate with the help of synonymous mutations or 
epigenomic features10–13. Recent approaches further calibrate their 
background models to the mutability of different nucleotide con-
texts9,12,13. These methods typically aggregate mutation counts over 
genes or genomic regions and compare them with a context-depen-
dent background expectation9,12,13. Current methods further com-
bine different tests to identify driver genes, for example by statistical 
methods11 or random forests19.

Nucleotide contexts around passenger mutations reflect the 
mutational process active in a given tumor20–23. For instance, 

APOBEC enzymes scan single-stranded DNA for specific nucleo-
tide sequence motifs and deaminate cytidine to uracil within  
these motifs24–26. Similarly, mutant polymerase ε randomly intro-
duces mutations in a non-uniform manner, as its fidelity depends 
strongly on the local nucleotide context27–30. Passenger mutations  
are thus embedded in nucleotide contexts characteristic of the 
underlying mutational process20–23, whereas driver mutations  
are localized towards functionally relevant positions. To the best 
of our knowledge, these functionally relevant positions are not 
surrounded by a particular nucleotide context. This suggests  
that driver mutations tend to occur more frequently than passen-
gers in ‘unusual’ nucleotide contexts, deviating from the contexts 
of the underlying mutational process. Consequently, an excess of 
mutations in unusual nucleotide contexts gauges the shift of driver 
mutations from functionally neutral towards functionally impor-
tant positions.

Nucleotide contexts can therefore inform driver-gene identifica-
tion in two complementary ways. Some of the recent methods cali-
brated their background models to the abundance of passengers in 
highly mutable nucleotide contexts9,12,13. Instead, we here examined 
the other end of the mutability spectrum and assessed the sparsity 
of passenger mutations in unusual nucleotide contexts. Previous 
studies have focused on the enrichment of passenger mutations 
in process-specific nucleotide contexts20–23, whereas few attempts 
have been made to quantify the absence of passenger mutations 
per nucleotide context (that is, scoring its degree of ‘unusualness’). 
However, this is an important endeavor as it helps identify positions 
in the cancer genome in which passenger mutations are rare, and 
mutations are thus a strong indicator of the shift of driver mutations 
towards functionally important positions.
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The use of unusual nucleotide contexts does not require previ-
ous knowledge of the exact location of the functionally relevant 
positions. This is essential, as the location of functionally impor-
tant positions is generally unknown17,18. We thus hypothesized that 
the performance of current methods to detect driver genes could 
be further improved by using mutations in unusual nucleotide con-
texts as an indirect proxy of functional importance. We developed a 
method that searches for genes harboring an excess of mutations in 
unusual nucleotide contexts and combined this feature with the sig-
nals used by existing methods to detect driver genes6–13. As such, our 
method is well suited to identify driver genes in cancer types with 
both low and high background mutation rates. We demonstrate 
that our method expands existing catalogs of driver genes in tumor 
types with high background mutation rates, in which the search for 
drivers has proven intrinsically challenging5,11,31,32.

Results
A framework for identifying driver genes in cancer. The main 
steps of our method are as follows (Fig. 1a). (1) The mutation 
probability of each genomic position in the human exome is mod-
eled depending on its surrounding nucleotide context20–23 and the 
regional background mutation rate33–35. (2) Given a gene g with ng 
nonsynonymous mutations in positions ~pg

I
, a Monte Carlo simula-

tion approach36,37 is used to simulate random ‘scenarios’ in which ng 
or more nonsynonymous mutations are randomly distributed along 
the same gene g. (3) The number and positions of mutations in each 
random scenario are compared with the observed mutations in 
gene g. Based on these comparisons, a P value for gene g is derived  
(Fig. 1a). (4) This P value is combined with additional statistical 
components that test for mutational clustering and the abundance 
of loss-of-function mutations19, including insertions and deletions.

In steps (2) and (3), we had to evaluate the joint probability of 
observing ng nonsynonymous mutations in positions ~pg

I
 by chance, 

assuming they were all passengers. This probability can be expressed 
as a product of the probability of observing ng nonsynonymous 
mutations in total and the probability that these mutations occupy 
specific positions ~pg

I
 in the gene sequence:

P ng ;~pg jsg ;~λg
 

¼ P ng jsg
� 

|fflfflfflffl{zfflfflfflffl}
regional

mutation rate
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 
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nucleotide

context

ð1Þ

Here, P(ng|sg) is the probability of observing ng nonsynony-
mous mutations in gene g, given the number of synonymous 
mutations sg. This factor accounts for regional variation in the back-
ground mutation rate on the megabase scale33,34 and is based on a  
previous study13. P ~pg jng ;~λg

� �

I

 denotes the probability of these ng 
nonsynonymous mutations falling in positions ~pg

I
, conditional on 

their context-dependent mutability scores ~λg
I

. This factor accounts 
for context-specific variation in the background mutation rate  
on the single-base scale20–23. We similarly computed the second  

factor for synonymous mutations and filtered out potential false 
positives caused by local deviations from the overall context-depen-
dent distribution of passenger mutations20,22. Finally, we deter-
mined the P value of gene g in step (3) as the fraction of random 
‘scenarios’ that had at least ng nonsynonymous mutations and had  
a joint probability lower than that of the observed data (evaluated 
through equation 1).

Context-dependent mutability of genomic positions. Our method 
requires the quantification of the mutability of genomic positions 
depending on their surrounding nucleotide context (~λg

I
 in the model 

above). To robustly characterize the mutability signal, our method 
first performs a Bayesian hierarchical clustering step that groups 
samples with similar mutational processes together (Supplementary 
Fig. 1). The 5′ and 3′ nucleotides immediately adjacent to a posi-
tion have the strongest effect on its mutability20–23 (Fig. 1b and 
Supplementary Figs. 2,3). However, as reported previously38,39, 
additional upstream and downstream nucleotides flanking a posi-
tion may also influence its mutability (Fig. 1b and Supplementary 
Figs. 2,3). The effect of the neighboring nucleotides has tradition-
ally been modeled by determining the mutation probabilities of all 
possible 96 trinucleotide contexts independently20–23, thus ignoring 
the effect of the broader nucleotide context. Here, we employed a 
composite likelihood model to account for the impact of flanking 
nucleotides outside the trinucleotide context on local mutation 
probabilities. In brief, this model returns a mutational likelihood 
score for each genomic position and incorporates the effect of each 
flanking nucleotide as a multiplicative factor (Fig. 1c–f, Extended 
Data Fig. 1, Supplementary Figs. 4,5 and Supplementary Note). In 
particular, the composite likelihood does not model the mutability 
of each possible nucleotide context separately (Supplementary Figs. 
6 and 7), which is crucial for the use of broad nucleotide contexts 
in the background model (sparsity of mutation counts per possible 
nucleotide context, prevention of overfitting of mutational hotspots 
in the context-dependent background signal). When applied to tri-
nucleotide contexts, this model closely matched the mutation prob-
abilities of the 30 widely used COSMIC mutation signatures20–23 
(Fig. 1c,d and Extended Data Fig. 1a). The composite likelihood 
model robustly generalized to broader nucleotide contexts for 
the 28 cancer types examined in this study despite signal sparsity  
(Fig. 1e,f, Extended Data Figs. 1–4 and Supplementary Figs. 6–11).

Considering the effects of the flanking nucleotides outside the 
trinucleotide context contributed to the accuracy of the compos-
ite likelihood model. For instance, considering heptanucleotide 
instead of trinucleotide contexts increased the correlation between 
the observed and predicted mutation probabilities of C>T muta-
tions in melanoma from 0.76 to 0.91, thus refining the approxi-
mation of the local mutation probabilities (Extended Data Fig. 
1c and Supplementary Fig. 11). Furthermore, we estimated the 
residual variance between the predicted and observed mutability 
scores across nucleotide contexts as a function of the number of 
nucleotides included in the composite likelihood model (Extended  
Data Fig. 4). Accounting for extended nucleotide contexts beyond 

Fig. 1 | Dependency of mutations on extended nucleotide contexts. a, We searched for mutations in unusual nucleotide contexts that deviate from the 
context around passenger mutations to identify driver genes. We combined this feature with other signals for driver-gene identification. b, Frequency at 
which each nucleotide occurs around recurrent mutations in bladder cancer (middle; n = 317), endometrial cancer (right; n = 327) and melanoma (bottom 
left; n = 582). c,d, We applied the composite likelihood model to the mutation frequency vectors of nine COSMIC mutation signatures20–23. For each 
trinucleotide context, we plotted the original frequency against the mutation frequency obtained from the composite likelihood model. Sign., signature.  
e,f, We tested whether the composite likelihood model generalized to broader nucleotide contexts in 12 cancer types (bladder, n = 317; brain, n = 760; 
breast, n = 1,443; cervix, n = 192; colorectal, n = 223; endometrial, n = 327; gastroesophageal, n = 833; head and neck, n = 425; lung adenocarcinoma, 
n = 446; pancreas, n = 729; prostate, n = 880 and skin, n = 582). For any three nucleotides in the 11-nucleotide context, we counted how many mutations 
were surrounded by the nucleotide triplet (n = 38,400 triplets, not necessarily adherent, ≥1 nucleotide on the 5ʹ and 3ʹ sides). We plotted these counts 
against the prediction of the composite likelihood model. We compared original and modeled mutation frequencies by using Pearson’s correlation 
coefficient (R). Plots for other mutation signatures and cancer types are provided in the Supplementary Information.
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Detection of cancer genes based on mutation counts and nucleotide context
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the trinucleotide context substantially reduced the residual vari-
ance for six tumor types (bladder, breast, cervix, colorectal, endo-
metrium and melanoma; Extended Data Fig. 4). For other tumor 
types, the residual variance remained largely the same when nucleo-
tides beyond the trinucleotide context were added to the composite 
likelihood model. Therefore, accounting for extended nucleotide 
contexts in the composite likelihood model helps with the identi-
fication of nucleotide contexts at both ends of the mutability spec-
trum, which is important to account for the abundance of passenger 
mutations in usual nucleotide contexts and the relative sparsity of 
passenger mutations in unusual nucleotide contexts.

Unusual contexts provide a signal for driver mutations. We 
next tested whether driver mutations occurred more frequently in 
unusual nucleotide contexts than passenger mutations, which is 
the biological rationale underlying our method. We first examined 
the nucleotide contexts around mutations in ten known melanoma 
genes and five genes unrelated to cancer (previously reported as 
false positives in cancer gene discovery studies10). Most mutations 
in the genes unrelated to cancer were surrounded by the charac-
teristic nucleotide contexts of passenger mutations, whereas several 
mutations in the cancer genes occurred in unusual nucleotide con-
texts (Fig. 2a).

We next analogously analyzed the nucleotide contexts around 
recurrent mutations (Fig. 2b,c). Recurrent mutations in the 
same position result from either driver mutations in functionally  
important sites40,41 or passenger mutations accumulating in highly 
mutable contexts20–23. We calculated the ratio of nonsynonymous to 

synonymous positions (Fig. 2b) and the fraction of positions fall-
ing into established cancer genes (Fig. 2c; Cancer Gene Census 
(CGC)42,43) to examine whether the nucleotide contexts could help 
distinguish between these two possibilities. Both measures sug-
gested that positions with recurrent mutations in weakly mutable 
nucleotide contexts contain higher fractions of driver mutations 
than positions with recurrent mutations in highly mutable contexts 
(Fig. 2b,c). In particular, the ratio of nonsynonymous to synony-
mous positions differed significantly from the baseline expecta-
tion for the positions surrounded by unusual nucleotide contexts 
(P = 1.47 × 10−4 for likelihood < 0.5 based on a beta-binomial dis-
tribution). In contrast, the ratios did not differ significantly from 
the baseline for the usual contexts (Fig. 2b; P = 0.74 for likeli-
hood < 3.5). Similarly, the positions with recurrent mutations in 
unusual nucleotide contexts fell into established cancer genes more 
frequently compared with the usual contexts (Fig. 2c; 16.7% versus 
9.7%, P = 6.48 × 10−4, χ2 test). Additional analyses are presented in 
Supplementary Figs. 12–15.

Hence, mutations in unusual nucleotide contexts provide an 
indirect measure of the shift of driver mutations towards function-
ally important positions without knowledge of their exact location. 
They may be particularly useful when the applicability of other 
proxies of functional excess is limited, owing to a high abundance 
of functionally neutral nonsynonymous passengers (diluting the 
statistical power of the difference between nonsynonymous and 
synonymous mutations11) or context-dependent positional cluster-
ing of passenger mutations (interfering with the search for driver 
mutations in mutational hotspots40).
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Fig. 2 | Mutations in unusual contexts provide a signal in favor of driver genes. a, On the basis of 582 melanoma samples, we examined the nucleotide 
contexts around mutations in ten cancer and five noncancer genes. We estimated the mutability of positions by using the composite likelihood. We tested 
which positions contained more mutations than expected (one-sided test, binomial distribution) and adjusted for multiple testing (FDR). We used an FDR 
threshold of 0.1 to classify whether the number of mutations per position was usual (gray) or unusual (orange) compared with its surrounding nucleotide 
context. Each nonsynonymous mutation is visualized as a dot. A small amount of jittering was added to separate mutations at the same position. b,c, The 
recurrence of mutations in the same position results from passenger mutations in highly mutable contexts or driver mutations at functionally important 
sites. On the basis of 582 melanoma samples, we examined whether the nucleotide contexts could distinguish between these two possibilities. We 
gradually modulated the mutational likelihood cutoff (x axis) from weakly mutable to highly mutable nucleotide contexts. We computed the ratio of 
nonsynonymous to synonymous positions (b) and the fraction of positions in established cancer genes listed in the CGC42,43 (c) for each cutoff. The error 
bars depict the 95% confidence intervals based on the beta distribution and the dots indicate the distribution mean. We determined the same measures 
for positions without mutations as a negative control. Recurrence is a better indicator of selection for sites with low mutational likelihood than for sites 
with high mutational likelihood.
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Comparison with other methods for driver-gene detection. We 
next examined whether the rationale behind our method provided 
an enhanced ability to identify driver genes. For this purpose, we 
used whole-exome sequencing data from a collection of 11,873 
tumor–normal pairs spanning 28 different tumor types (Extended 
Data Fig. 5 and Supplementary Table 1). Furthermore, we used two 
homogeneously processed datasets (The Cancer Genome Atlas 
(TCGA) and Multi-Center Mutation Calling in Multiple Cancers 
(MC3); Supplementary Note) to confirm our results. We applied 
seven current methods for benchmarking, representing major 
sources for driver-gene detection, including mutational recurrence 
above a modeled background (MutSigCV10,11), difference between 
synonymous and nonsynonymous mutations (dNdScv12), posi-
tional clustering into mutational hotspots (OncodriveCLUST7), 
bioinformatically predicted scores of functional impact (e-Driver6, 
OncodriveFM8 and OncodriveFML9) and a combination of differ-
ent sources of mutational significance (RF5 method19). We used the 
CGC42,43 as a conservative approximation of the true-positive rate 
(that is, not every non-CGC gene is necessarily a false positive) and 
plotted a receiver-operating-characteristic curve up to the top 1,000 
significant non-CGC genes for each method.

Our method (MutPanning) exhibited the highest performance in 
two homogeneously processed datasets as well as our study cohort of 
11,873 samples (Fig. 3, Extended Data Figs. 6–9 and Supplementary 
Figs. 16–19). In our study cohort, our method outperformed the 
seven other methods in 26 of 28 cancer types (Extended Data  
Figs. 6,7, Supplementary Fig. 16 and Supplementary Table 2), 
whereas none of the other methods displayed a robust second-
best performance across all cancer types (Extended Data Fig. 6). 
Our method exhibited similarly improved performance relative to 
other methods when we used the OncoKB44 instead of the CGC42,43 

database for comparison (Extended Data Figs. 6–8, Supplementary 
Fig. 17 and Supplementary Table 2). We obtained analogous results 
when using the precision at 5% recall45 (Extended Data Figs. 6–8, 
Supplementary Fig. 18 and Supplementary Table 2) and in addi-
tional analyses (Supplementary Figs. 20–23).

We performed two power analyses to examine whether the 
nucleotide contexts contributed to the performance of our approach 
(Supplementary Fig. 24). The impact of the nucleotide contexts 
on the performance of MutPanning was most prominent in can-
cers with highly context-specific distributions of passenger muta-
tions (Supplementary Fig. 24). In these cancer types, extended 
nucleotide contexts enhanced the fit of the composite likelihood 
model (Extended Data Fig. 4). These analyses further suggest that 
mutational recurrence and unusual nucleotide contexts define 
complementary signals, both of which are important for the per-
formance of MutPanning (Fig. 3, Extended Data Figs. 4,6–9 and 
Supplementary Figs. 16–19,24,25). The mutational recurrence was 
highly informative in cancer types with low background mutation 
rates, such as thyroid cancer (Fig. 3, Extended Data Figs. 4,6–9 and 
Supplementary Figs. 16–19,24,25). The nucleotide contexts were 
the dominant criterion used by our method in cancer types with 
highly context-specific distributions of passenger mutations, such 
as melanoma (Fig. 3, Extended Data Figs. 4,6–9 and Supplementary 
Figs. 16–19,24,25). Two cancer types (lung adenocarcinoma and 
squamous-cell lung cancer) with high mutation rates and context-
independent distributions of passenger mutations may represent a 
potential challenge for MutPanning and the other methods in our 
benchmarking panel (Supplementary Figs. 24 and 25).

Stratification of driver genes based on literature support. We  
combined the findings identified by our method (Figs. 4–6, Extended 
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number of non-CGC genes (x axis) against the number of CGC genes (y axis) until the list contained 1,000 non-CGC genes. Insets: 150 non-CGC genes. 
This figure shows this benchmarking analysis for three cancer types with a high context dependency based on the TCGA subcohort (bladder, n = 130; 
endometrial, n = 305 and skin, n = 342) and one cancer type with a low context dependency based on the TCGA subcohort (lung adenocarcinoma, 
n = 230). Similar curves for other cancer types and the full study cohort are provided in Extended Data Figs. 6–9 and the Supplementary Information.
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Data Fig. 10, Supplementary Figs. 26–64 and Supplementary  
Tables 3,4) into a driver gene catalog of 460 genes and 827 gene–
tumor pairs (pairs of significantly mutated genes and their associ-
ated tumor type). The number of gene–tumor pairs varied between 
tumor types (for example, 42 pairs for cutaneous melanoma versus  
four pairs for uveal melanoma), depending on the cohort size11 
(R = 0.66; Fig. 4 and Supplementary Fig. 26a) and the background 
mutation rate46 (R = 0.24; Fig. 4 and Supplementary Fig. 26b). 
Furthermore, some cancer types exhibited overlaps in driver genes 
(Supplementary Fig. 27). Most findings could be similarly identified 
in the MC3 (refs. 5,47) and TCGA datasets (Supplementary Fig. 28).  
We compared our results with both the CGC42,43 and a systematic 
literature search for experimental or clinical support of our findings  
(Fig. 5a). On the basis of these comparisons, we stratified our find-
ings into four levels according to supporting evidence in the litera-
ture (Fig. 5a): level A includes gene–tumor pairs involving canonical 
cancer genes in the CGC (523 of 827, 63%); level B contains gene–
tumor pairs with experimental literature support in the same tumor 
type as was identified by our method (106 of 827, 13%); and level 
C consists of gene–tumor pairs with experimental literature sup-
port in a different tumor type (115 of 827, 14%). The fraction of 
gene–tumor pairs with no literature support (level D) varied in 
accordance with the false-discovery rate (FDR) thresholds used for 
cancer gene identification: 4% for FDR < 0.01, 6% for FDR < 0.05, 
8% for FDR < 0.1 and 10% for FDR < 0.25.

We next examined the overlap between our catalog and results 
reported as significant in previous pan-cancer studies for driver-gene 
discovery (Fig. 5b–d and Supplementary Figs. 29–32). Lawrence 
et al. used the MutSigCV suite to detect driver genes across 4,742 
tumors11. Martincorena et al. applied the dNdScv algorithm to 7,664 
tumors12. Most marker papers from TCGA employ MutSigCV10,11 
or MuSiC48 to discover cancer genes14–16. Bailey et al. recently com-
bined 26 different computational tools to search for driver genes 
in 9,423 tumors5. We identified 85% of the CGC gene–tumor pairs 
reported in at least two of these studies. Hence, our findings are 
consistent with previously reported results (Fig. 5b,c). Moreover, 
our catalog contained 169 additional gene–tumor pairs that were 
part of the CGC but were missing from all previous driver-gene cat-
alogs (Figs. 4, 5b,d and Supplementary Tables 3,4). This number was 
larger than the corresponding numbers identified in previous stud-
ies (Lawrence11, 25; Martincorena12, 12; TCGA14–16, 11 and Bailey5, 
51). Both the robust performance of our method (Fig. 3, Extended 
Data Figs. 6–9 and Supplementary Figs. 16–19) and the marginally 
larger size of the sequencing dataset underlying our study (11,837 
tumors in this study versus up to 9,423 tumors in previous studies) 
may have contributed to the larger size of our driver-gene collec-
tion. Even after removing all gene–tumor pairs identified in at least 
two studies, 47%, 50% and 84% of our findings involved canonical 
cancer genes in the CGC42,43, the OncoKB genes44 or had experi-
mental support in the literature, respectively (Fig. 5a). Analogous 
numbers were 40%, 42% and 82% for genes in our catalog that were 
not part of any of the other driver-gene catalogs. These rates are 

considerably higher than those obtained for random gene–tumor 
pairs (3.8%, 5.3% and 17%, respectively). Moreover, several of the 
additional driver genes are differentially expressed between mutated 
and wild-type samples, a pattern that is common for known cancer 
genes (Supplementary Fig. 33a,b). The additional driver genes in 
our catalog, which were not included in any of the previous cata-
logs, were 5.4-fold enriched for this pattern compared with random 
controls (P = 4.90 × 10−37, χ2 test). This adds an additional layer of 
support for their driver candidacy (Supplementary Fig. 33c,d). 
Furthermore, the protein products of the following additional 
genes in our catalog have known functional roles in tumor devel-
opment: NOTCH2, MAML2, FGFR4, ERRFI1, FGFRL1, IKZF3, 
ERF, ETV6, HNF1A, CTNND2, TCF7L1, ANAPC1, BTG1, CCNQ, 
ROCK2, AIM2, STAT3, BIRC3, BIRC6, SF3B2, ESRP1, KLHL6, 
UBE2A, UBR5, POLR2A, REV3L, RECQL4, RECQL5, JMJD1C, 
SMARCA2 and SMAD3 (see Supplementary Table 5 for literature 
references and Extended Data Fig. 10, Supplementary Figs. 34,35 
and Supplementary Note for a discussion of their functional roles). 
Although they had been reported individually and in separate pub-
lications focusing on a certain cancer subtype or gene, they had not 
been identified together in a systematic pan-cancer analysis and 
were missing from all previous pan-cancer studies5,11,12,14–16. Our full 
driver-gene catalog is available as an online resource (www.cancer-
genes.org).

Clustering of driver genes based on physical interactions. We 
examined whether the additional driver genes in our catalog 
revealed insights into tumor signaling when analyzed in combina-
tion with established driver genes. Using a large-scale protein–pro-
tein interaction dataset49–52, we studied the physical interactions 
between the protein products of established (that is, CGC genes) 
and less well-established driver genes (that is, non-CGC genes) in 
our catalog. We noticed that several CGC/non-CGC interactions 
in our catalog had well-defined functional roles in tumor signaling 
(Fig. 6a). For instance, the protein product of the non-CGC gene 
TCF7L1 directly mediates the Wnt signaling activity of CTNNB1 
(ref. 53,54), which is listed in the CGC; the non-CGC gene ERRFI1 
encodes a protein that inhibits the activation of EGFR55 (listed in the 
CGC); and the transcriptional activity of POLR2A (not in the CGC) 
is mediated by MED12, which is part of the transcriptional media-
tor complex56,57 and the CGC (Fig. 6a). Thus, the physical interac-
tions between the protein products of CGC and non-CGC genes 
informed the characterization of less well-established driver genes 
in our catalog.

Driver genes clustered into 21 pathways on the basis of their 
physical interactions (Fig. 6a). These 21 pathways include major 
cancer hallmark pathways58,59 (for example, MAPK signaling, 
mTOR–PI3K signaling, cell-cycle regulation, DNA repair and chro-
matin modification) as well as additional pathways involved in car-
cinogenesis (for example, RNA binding60,61, ribosome function62,63, 
Rho GTPases64,65 and immune signaling66,67). Some pathways were 
mutated across most of the 28 cancer types examined (for example, 

Fig. 4 | A catalog of driver genes in human cancer. We derived a catalog of driver genes across 28 cancer types based on the whole-exome sequencing 
data from 11,873 tumor–normal pairs. Extended Data Fig. 5 lists the exact number of samples per cancer type. The P values were derived using our 
approach (MutPanning) and then adjusted for multiple testing. The most significant gene–tumor pairs (FDR < 0.25) for each cancer type are listed in 
decreasing order of their mutation frequencies (indicated by the color of the square next to the gene name). A maximum of 50 gene–tumor pairs are 
shown per cancer type. The full catalog can be found in Supplementary Table 3. The font size of the gene name reflects its significance, with highly 
significant genes in large font and less significant genes in small font. We compared our driver-gene catalog with four catalogs from previous pan-cancer 
studies. The colored dots indicate which gene–tumor pairs were listed as significant in previous catalogs. The font colors reflect which gene–tumor pairs 
had been reported in the literature (confidence levels A–D). Heterogeneity in variant calling, tissue collection protocols and mutation reports (synonymous 
mutations were not reported for 6.1% of the samples; studies marked in Supplementary Table 1) may represent a potential limitation for driver-gene 
identification. We therefore ran MutPanning on two uniformly processed datasets (TCGA, n = 7,060 samples and MC3, n = 9,079 samples) that did not 
have these limitations. We marked the gene–tumor pairs that also reached statistical significance in these smaller datasets (TCGA or MC3) with asterisks. 
The TCGA and MC3 datasets did not include adenoid cystic carcinoma.
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apoptosis regulation and chromatin modification), whereas other 
pathways were more specific to tumor types (for example, G pro-
teins, metabolism, TGFβ signaling and Wnt signaling; Fig. 6b). 

Moreover, several pathways exhibited either positive (for exam-
ple, chromatin/apoptosis regulation, Wnt/TGFβ signaling and  
RTK/MAPK signaling) or negative (for example, PI3K/MAPK  
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signaling, RTK/Wnt signaling and ubiquitination/transcription 
factors) associations with one another (Fig. 6b). In eight pathways, 
more than 60% of the mutational signal was concentrated in ≤2 
genes (for example, mTOR–PI3K signaling, apoptosis regulation, 
Wnt signaling and Notch signaling). In the other 13 pathways, the 
signal was widely spread across rare driver genes and <60% of the 
mutations occurred in the two most frequently mutated genes (for 
example, chromatin modification, DNA repair and immune signal-
ing; Supplementary Fig. 36).

Discussion
We developed a method for driver-gene identification that utilizes 
mutations in unusual nucleotide contexts in combination with 
established sources for driver-gene discovery (Fig. 1)6–13. Passenger 
mutations are enriched in characteristic nucleotide contexts, 
depending on the tumor type and mutational process20–23, whereas 
driver mutations are localized towards functionally important posi-
tions40,41,68,69 that do not follow any particular context-specific distri-
bution patterns. As a result, we expect that functionally important 
mutations occur, on average, more frequently in unusual nucleo-
tide contexts relative to passenger mutations. Hence, a shift in 
mutations from usual to unusual nucleotide contexts mimics the 
shift from functionally neutral to functionally important positions  
(Figs. 1 and 2). Our method compares the nucleotide context around 
each genomic position in the human exome with the observed 
number of mutations at that position. Thus, our method weighs 
each nonsynonymous mutation in the human exome differentially; 

nonsynonymous mutations in weakly mutable nucleotide contexts 
have a higher impact on the P value of a gene than nonsynonymous 
mutations in highly mutable nucleotide contexts.

To benchmark our method, we compiled a large-scale whole-
exome sequencing dataset of 11,873 samples from TCGA and non-
TCGA studies (Extended Data Fig. 5). Although all samples were 
processed with the same sequencing strategy and a homogeneous 
variant filter, differences in tissue collection protocols, variant 
calling pipelines and mutation reports (for example, synonymous 
mutations were not reported in 6.1% of the samples) may repre-
sent a potential source of heterogeneity. Hence, we used two uni-
formly processed datasets for validation (Extended Data Fig. 9 
and Supplementary Fig. 19). Furthermore, although solid tumors 
in TCGA were largely unaffected by tumor-in-normal contamina-
tion70, tumor-in-normal contamination may have affected variant 
calling in blood tumors, thereby missing potential driver genes.

Our method enabled us to systematically aggregate large num-
bers of driver genes that were missing from the catalogs of previous 
pan-cancer studies (Figs. 4 and 5). For most tumor signaling path-
ways, mutations are spread across long tails of driver genes58. The 
mutation frequencies of genes at the ends of these tails are below 
the detection thresholds of current methods used for driver-gene 
identification5,11,31,32. Given that our catalog contained multiple rare 
driver genes with mutation frequencies as low as 1%, it may rep-
resent a valuable resource for aggregating mutations across these  
tails, thereby enabling driver mutations to be characterized at a 
pathway level rather than a gene level (Figs. 4–6). Our study further 
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demonstrates that the identification of multiple driver genes in the 
same pathway facilitates the biological interpretation of mutations in 
less well-established driver genes (Fig. 6). Our catalog may similarly 
inform the clinical annotation of tumor patients with mutations in 
less-established driver genes and thereby enhance comparisons of 
mutation profiles across patients51,71.

Moving forward, we anticipate that mutations in unusual nucle-
otide contexts may also be useful in related areas, including the 
capture of low-frequency mutational hotspots40,72 and probabilistic 
annotation of mutations as drivers in the genomes of individual 
tumor patients18,73. Furthermore, our approach may directly inform 
driver-gene identification in ongoing and future large-scale cancer-
genome sequencing efforts such as GENIE74, MSK-IMPACT75, 
PCAWG76, ICGC77 and HMF78. Our method is available as an inter-
active software tool called MutPanning (www.cancer-genes.org) 
and can be run online as a module on the GenePattern platform79,80 
(www.genepattern.org).
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Methods
Sequencing-data curation and variant filtering. We compiled whole-exome 
sequencing data from 32 TCGA-related projects (7,091 samples) as well as from 
55 TCGA-independent publications (4,856 samples). Mutation annotation files 
(MAFs) for TCGA-related projects were directly obtained from the TCGA 
Gene Data Analysis Center data portal hosted by the Broad Institute (gdac.
broadinstitute.org; latest data version from 28 January 2016, doi:10.7908/
C11G0KM9). The MAFs for the TCGA-independent studies were either 
downloaded from the cBioPortal platform (www.cbioportal.org)81,82 or—if not 
available there—directly from the supplements of the publications. Details on how 
we selected these studies and samples can be found in the Supplementary Note.

We integrated all mutations into a combined MAF and removed duplicate 
patients from the combined MAF. We grouped patients into subcohorts according 
to their cancer type. Most of these tumor types were defined as in the TCGA 
marker papers (27 of 28 tumor types).

Finally, mutations from this combined MAF were processed through a 
homogeneous filtering step to minimize sequencing artifacts, mutation calling 
errors and germline variants that might have slipped through the variant filters 
applied in each study. We applied the following filters.

Filtering of common germline variants. Each mutation was compared against the 
Exome Aggregation Consortium database83, which reports the germline variants of 
60,706 individuals. Similarly to a previous study74, we removed all variants from the 
MAF that occurred more than ten times in any of the seven Exome Aggregation 
Consortium subpopulations.

Removal of 8-oxoguanine and strand-bias sequencing artifacts. Oxoguanine artifacts 
result from excessive oxidation during sequence-library preparation84, whereas 
strand-bias artifacts produce disparities between G>T and C>A mutation counts 
at low variant allele frequencies47. We used the annotation of the MC3 dataset47 to 
reduce the number of oxoguanine and strand-bias artifacts in our MAF.

Removal of low-quality samples. Samples for which >10% of the somatic mutations 
were flagged as artifacts or germline variants were removed from the study.

In this way, we arrived at a study cohort of 11,873 tumor samples spanning 28 
different cancer types.

Statistical analyses to identify driver genes. The first step of MutPanning is to 
cluster samples with similar passenger-mutation distributions together and to 
characterize the context-dependent background signal in each cluster. In brief, we 
first counted the number of mutations of each base substitution type t (C>A, C>G, 
C>T, T>A, T>C and T>G) for each sample and summarized these counts into a type 
count vector vtype 2 N6

I
. Each element vtypet

I
 in this vector corresponds to the number 

of base substitutions of type t 2 1; ¼ ; 6f g
I

. We further counted the nucleotides that 
occurred in a 20-nucleotide window around the mutations identified for each sample 
to capture the extended nucleotide context around mutations. We summarized 
these counts into the nucleotide context count vector vseq 2 N6´ 20 ´ 4

I
. Each element 

vseqt;p;n

I
 in this vector denotes the count of nucleotide n 2 A;C;G;Tf g

I
 in position 

p 2 ½�10; 10n 0f g
I

 around mutations of type t 2 1; ¼ ; 6f g
I

. MutPanning then 
quantified the similarity between two count vectors v;w 2 Nl

I
 by examining whether 

updating a distribution prior x by w made the observation of v more likely (Dirichlet 
multinomial distribution). More details on the choice of the distribution prior x as 
well as the metrics to compare count vectors are provided in the Supplementary Note.

In the second step, MutPanning establishes a composite likelihood model for 
each cluster C of samples. In brief, MutPanning derives likelihood ratios for each 
cluster C as

λCt;p;n :¼
vseqt;p;n

vtypet  f refn tð Þ;p;n

where f refn;p;n0

I
 denotes the frequency of nucleotide nʹ around nucleotide n at 

position p in the human exome, and n(t) denotes the reference nucleotide of base 
substitution type t (that is, C for types t = 1, 2 and 3 and T for types t = 4, 5 and 6).  
Hence, λCt;p;n

I
 reflects the ratio of the observed number of mutations (vseqt;p;n

I
) and 

the expected number of mutations (vtypet  f refn tð Þ;p;n
I

) if all mutations were equally 
distributed across the human exome.

Similarly, given a substitution type t 2 1; ¼ ; 6f g
I

 we define the likelihood  
ratio as

λCt :¼ vtypet

vtypej j=6
with vj j :¼

P
k vkj j

I
. Hence, λCt

I
 reflects the ratio of the observed number of 

mutations (vtypet
I

) of substitution type t and the expected number of mutations 
( vtypej j=6
I

) if all substitution types occurred at the same frequency.
Given a base substitution type t and a genomic position that is surrounded by 

nucleotides np at position p, we define its composite likelihood as

λpos :¼ λCt 
Y

�10≤p≤10
p≠0

λCt;p;np

for reference nucleotides n0 = C and T, and

λpos :¼ λCt 
Y

�10≤p≤10
p≠0

λCt;�p;np

for reference nucleotides n0 = A and G; np
I

 denotes the complementary nucleotide 
to np.

This likelihood score indicates whether the position is expected to contain 
more (λpos > 1) or fewer mutations (λpos < 1) compared with a flat mutation 
distribution. That way, highly mutable nucleotide contexts (λpos � 1

I
) and 

mutations in highly unusual nucleotide contexts (λpos � 1
I

) can be identified and 
weighted differently in the statistical model. More details on the full composite 
likelihood model can be found in the Supplementary Note.

In the third step, MutPanning examines how likely the number and positions 
of its nonsynonymous mutations might occur by chance for each gene. Three 
different base substitutions are possible for each reference nucleotide. Hence, 
given a gene of length lg, we defined a count vector vg 2 Nlg ´ 3

I
 that contains the 

number of mutations at each position and for each substitution type. Similarly, 
we defined the vector λg that contains the composite likelihood for each position 
and substitution type in gene g. We then split these vectors into vg ¼ vg;s; vg;nð Þ

I
 

and λg ¼ λg;s; λg;nð Þ
I

, reflecting synonymous and nonsynonymous positions, 
respectively.

MutPanning then determines the probability of observing vg,n by chance, given 
the number of synonymous mutations |vg,s| and the context-dependent composite 
likelihood scores λg,n in the same gene. This probability factorizes into two factors

P vg;nj j j vg;sj jð Þ  P vg;n j vg;nj j; λg;nð Þ

The first factor (P vg;nj j j vg;sj jð Þ
I

) reflects the chance of observing |vg,n| 
nonsynonymous mutations in a gene with |vg,s| synonymous mutations. This factor 
is modeled by a convoluted Poisson distribution, that is vg;nj j  Pois μð Þ

I
, where  

the mutation rate μ is drawn from another distribution, conditional on the  
number of synonymous mutations |vg,s| (see Supplementary Note for more details). 
This factor accounts for mutational recurrence above the regional background 
mutation rate. The second factor ( P vg;n j vg;nj j; λg;nð Þ

I
) reflects the chance that 

these |vg,n| nonsynonymous mutations occur in their observed positions (vg,n) 
conditional on the context-dependent mutational likelihood scores λg,n. This  
factor is modeled by a multinomial distribution that distributes the |vg,n| 
nonsynonymous mutations across genomic positions proportionally to 
their composite likelihood scores in λg,n. This factor accounts for an excess 
of mutations in unusual nucleotide contexts. This enabled us to obtain the 
probability of observing the number (first factor) and positions (second factor) of 
nonsynonymous mutations by chance. More details on these distribution models 
are provided in the Supplementary Note.

In the fourth step, MutPanning examines whether the probability derived 
in the previous step is small or large compared with a ‘random’ scenario of 
≥ |vg,n| nonsynonymous mutations in the same gene obtained from Monte 
Carlo simulations. For each scenario, we randomly drew the total number of 
nonsynonymous mutations from a randomized Poisson model13, conditional 
on the number of synonymous mutations |vg,s|. We simulated the positions of 
nonsynonymous mutations across the gene by using a multinomial distribution, 
conditional on the context-dependent composite likelihood scores λg,n (see 
Supplementary Note for more details on both distributions). To derive a P value 
for each gene, we compared the probability of each scenario with the observed 
number and positions of nonsynonymous mutations (see Supplementary Note 
for more details on this comparison). More details on the simulation step and the 
computation of P values are provided in the Supplementary Note.

In the fifth step, MutPanning computes two additional P values for each gene, 
which account for destructive mutations (which are an important source to detect 
tumor suppressors) and for positional clustering (which is an important source to 
detect mutational hotspots in oncogenes). These P values are then combined with 
the P value from the previous step using the Brown method. More details on the 
calculation of these additional P values and their combination to a final P value are 
provided in the Supplementary Note.

In the last step, MutPanning adjusts its significance values for multiple testing 
(FDR). Furthermore, it performs additional filtering steps to reduce the number 
of false positives. For instance, MutPanning determines whether the nucleotide 
contexts around synonymous mutations deviate from the overall distribution 
pattern (for example, due to local accumulation of APOBEC-related mutations). If 
the null hypothesis is locally violated (local deviation from the context-dependent 
distribution), significant P values do not necessarily reflect positive selection and 
these genes are filtered. More details on this filtering step as well as the adjustment 
for multiple testing can be found in the Supplementary Note.

Stratification of driver genes based on literature support. To explore the 
relevance of our findings, we systematically examined which significantly mutated 
genes were supported by the literature. In brief, we stratified our findings into four 
different ‘confidence’ levels (levels A–D).
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Level A. The gene was listed as a canonical cancer gene in the CGC42,43.

Level B. The gene had not been reported in the CGC, but there were experimental 
data implicating the gene in the tumor type in which we discovered it as 
significantly mutated.

Level C. The gene had not been reported in the CGC and there were no experimental 
data to support the gene in the tumor type in which we discovered it. However, there 
were experimental data that the gene has a functional role in cancer.

Level D. The gene had not been reported in the CGC and there was no 
experimental evidence that this gene plays a role in cancer.

To characterize the functional roles of significant findings that were not 
part of the CGC42,43 (level A), we systematically searched for publications with 
experimental and clinical data that implicated our findings in cancer. In brief, our 
literature search proceeded in two main stages. The first stage entailed searching 
for experimental evidence in the same tumor type in which we had detected the 
gene as significantly mutated (steps 1a–4a). In the second stage, we examined 
whether genes for which we had not found any functional data in the same tumor 
type had been reported as functionally relevant in any cancer type (steps 1b–4b).

Both of these stages contained a fully automated part (steps 1–3) and a manual 
review part (step 4). In steps 1–3, we automatically retrieved the abstracts from 
the PubMed database of publications supporting our findings, pre-filtered them 
and sorted them by relevance. In step 4, we determined whether the publications 
contained any experimental data to support our findings.

Step 1a. For each gene–tumor pair, we searched for the gene name plus the cancer 
type through the Esearch tool (NCBI Entrez Programming Utilities, E-utilities). The 
Esearch tool provided automated access to the PubMed database. For the gene name, 
we used the officially approved symbol from the NCBI Reference Sequence Database 
(RefSeq). For the name of the cancer type, we used all names that commonly 
appear in the literature (Supplementary Note). If more than one name existed, we 
searched for all names separately and combined the search results. In this manner, 
we obtained a list of PubMed IDs (PMIDs) for each gene–tumor pair. If we retrieved 
more than 100 IDs, we added the search term ‘mutation’ to narrow our results.

Step 1b. We proceeded in parallel to step 1a. We used the search terms ‘cancer’, 
‘tumor’, ‘tumour’ and ‘carcinoma’ instead of the cancer type.

Steps 2a/b. For each PMID from steps 1a and 1b, we obtained the abstracts 
and meta-information from the PubMed database using the Efetch tool (NCBI 
E-utilities). We pre-filtered our results on the basis of this information to guarantee 
that an abstract was available in English and that the PMID referred to original 
work. Reviews and case reports were excluded if annotated in the meta-data.

Step 3a/b. For several gene–tumor pairs, we obtained more abstracts than we 
could manually review. Hence, we retained a maximum of 15 publications per 
gene–tumor pair for manual review. To retain the most relevant publications, we 
prioritized abstracts according to the relevance score (Supplementary Information). 
We further sorted publications with the same relevance score by the number of 
citations, which we retrieved through the Elink tool (NCBI E-utilities; link name: 
‘pubmed_ pubmed_citedin’). We used the publication date as a third criterion.

Steps 4a/b. We manually reviewed the abstracts to examine whether the publication 
reported experimental data for the gene–tumor pair. In particular, we excluded 
publications that only co-mentioned the tumor type and the gene name in the 
abstract or reported the presence of a somatic mutation without any functional 
validation. In addition, we excluded all publications that reported germline 
mutations—for example, associated the gene with increased cancer risk or heritability. 
As a negative control, we ran the entire literature search pipeline for 2,500 randomly 
chosen gene–tumor pairs—that is, randomly chosen combinations of arbitrary genes 
in the RefSeq database and an arbitrary cancer type examined in this study.

More details on these steps as well as a visualization of our search strategy can 
be found in the Supplementary Note.

Analysis of mutations in unusual nucleotide contexts. In Fig. 2 we visualized 
the unusualness of nucleotide contexts for mutations in ten known melanoma 
genes and five noncancer genes. To quantify whether a position contained more 
mutations than expected on the basis of its surrounding nucleotide context, we 
counted the number vi of mutations in each position i and compared these counts 
with the mutational likelihood λi in position i. For each position with vi mutations, 
we determined the probability of observing vi or more mutations in position i by 
chance according to a binomial distribution

pi :¼
X

vi ≤ k≤ v

v
k

 
 λi

λ

 k

 1� λi
λ

 v�k

where v ¼ P
vi

I
 and λ ¼ P

λi
I

 denote the sum of counts and mutational likelihoods, 
respectively, across all positions in the gene.

We then adjusted these probabilities pi for multiple testing. We randomly 
distributed v mutations across the gene by using a multinomial distribution 
with probabilities λi/λ. For each position, we determined a P value with the same 
equation as above. We repeated this procedure 100 times to generate a cumulative 
distribution function of the expected distribution of P values. For each observed 
P value pi, we determined the expected P value ~pi

I
 at the same rank based on the 

distribution of simulated P values. We then determined the fraction fi of simulated 
P values that were smaller than pi. Similarly, we computed the fraction ~fi

I
 of 

simulated P values that were smaller than ~pi
I

. We then derived the ratio fi=~fi
I

 and 
defined the q value of pi as the minimum of that ratio and all following q values. 
For each nonsynonymous mutation, we then plotted the q value of its position 
against its genomic coordinate in the gene, where we used an FDR cutoff of 0.1 to 
classify a mutation as usual (q ≥ 0.1) versus unusual (q < 0.1).

Analysis of physical interactions between driver genes. For Fig. 6, we used 
experimental data from the STRING database49 to study physical interactions 
between driver genes in our catalog. The STRING database collects experimental 
interaction data from the BIND85, DIP86, GRID87, HPRD88, IntAct89, MINT90 and 
PID91 datasets, and assigns a unified score between 0 (no interaction) and 1 (strong 
interaction) to each interaction. We examined whether physical interactions with 
established driver genes might inform the characterization of less well-established 
driver genes.

We visualized physical interactions between driver genes in our catalog as a 
minimum spanning tree based on Kruskal’s algorithm. In brief, Kruskal’s algorithm 
starts with a separate unconnected component for each gene. The algorithm then 
goes through all physical interactions in descending order. If a physical interaction 
connects two unconnected components, it is added as an edge to the graph, and 
otherwise it is ignored. This procedure is analogous to hierarchical clustering with 
single linkage. We then used force-directed graph drawing (Fruchterman–Reingold 
algorithm) to align nodes and physical interactions between them.

Visualization of mutations using protein crystal structures. Protein structures 
were visualized using the PyMOL Molecular Graphics System, v.2.0 Schrödinger, 
LLC and the respective publicly available coordinate files derived from the Protein 
Data Bank (PDB). The X-ray diffraction crystal structures of CEBPA (PDB 
1NWQ)92, GATA3 (PDB 4HCA)93, RUNX1 (PDB 1H9D)94 and SOX17 (PDB 4A3N 
superposed with 3F27)95,96, as well as electron microscopy structures of ANAPC1 
(PDB 5G05)97 and POLR2A (PDB 5IYB)98 were utilized. All protein sequences were 
Homo sapiens except for CEBPA, which was Rattus norvegicus (sequence homology 
of 93.1% to H. sapiens CEBPA). The crystalized human sequence of SOX17 was 
superimposed with the crystal structure of Mus musculus SOX17 in complex with 
DNA. No structural differences between human (no DNA) and mouse SOX17 
(plus DNA) were observed. HDAC4 is a co-crystalized structure with a selective 
class IIa HDAC inhibitor (not shown) occupying the active site of the deacetylase.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A complete MAF of the sequencing data used in this study is available on www.
cancer-genes.org and in the Supplementary Information.

Code availability
MutPanning can be downloaded as an interactive software package from 
www.cancer-genes.org and from the Supplementary Information (including 
Supplementary Data 1–4). MutPanning can be run on a local computer with at least 
one CPU, 8 GB memory and 2.5 GB hard drive. In addition, an online version of 
MutPanning is available through the GenePattern platform (http://www.genepattern.
org/modules/docs/MutPanning and http://bit.ly/mutpanning-gp). The MutPanning 
source code is available on GitHub (https://github.com/vanallenlab/MutPanningV2). 
MutPannig is distributed under the BSD-3-Clause open source license.
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Extended Data Fig. 1 | Modeling of mutation probabilities based on extended nucleotide contexts. a, We applied the composite likelihood model to 
COSMIC mutation signatures. For each trinucleotide context, we compared the original mutation frequency against the mutation frequency returned by 
the composite likelihood model based on Pearson correlation. Dot colors reflect base substitution types. b, For six base substitution types, we plotted 
the original mutation probability (based on 11873 samples) against the prediction of the composite likelihood model, which we derived as the product 
of the mutational likelihood of its reference nucleotide and its substitution type. Each dot represents a cancer type. Pearson correlations are annotated 
at the bottom right. The number of samples per cancer type can be found in Extended Data Fig. 5. c, For three cancer types (bladder, n = 317 samples; 
endometrium, n = 327; skin, n = 582) we examined whether nucleotides outside the trinucleotide context affected mutation probabilities. For this purpose, 
we compared mutation probabilities, modeled based on tri- (blue) and 7-nucleotide contexts (yellow), with original mutation probabilities based on 
context-specific mutation counts. Data points are sorted according to the modeled mutation rates, derived from the 7-nucleotide context (x-axis). Black 
circles indicate ratios between the observed probabilities and the corresponding trinucleotide-specific likelihoods (y-axis). Similarly, the orange line 
displays the ratio between the likelihoods, derived from the 7-nucleotide and trinucleotide contexts, respectively (y-axis). Local mutation probabilities vary 
across positions surrounded the same trinucleotide context. Accounting for extended nucleotide contexts reduces this heterogeneity.
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Extended Data Fig. 2 | Evaluation of the composite likelihood model applied to extended nucleotide contexts. To test the independence assumption of 
the composite likelihood model, we examined the interaction between any two positions (25 possible combinations) in the 11-nucleotide context around 
mutations of eight cancer types (bladder, n = 317 samples; breast, n = 1443; colorectal, n = 223; endometrium, n = 327; gastroesophageal, n = 833; head 
and neck, n = 425; lung adeno, n = 446; skin, n = 582). For any two positions, there are 96 possible nucleotide contexts and we plotted the observed 
mutation count of each nucleotide context (x-axis) against the predictions of the composite likelihood model (y-axis). Pearson correlation coefficients 
between observed and predicted data served as a measure of interaction. Each position pair is visualized in a separate correlation plot, and positions are 
annotated at the bottom right of the plot. For instance, pair (-1,1) refers to the trinucleotide context. Dot colors indicate the base substitution types.
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Extended Data Fig. 3 | Generalization of the composite likelihood model to extended nucleotide contexts. We counted the number of mutations in each 
possible nucleotide context of length ≤7 based on the sequencing data of 11,873 samples. The exact number of samples per cancer type included in this 
analysis is shown in Extended Data Fig. 5. We compared these counts with the mutability scores returned by the composite likelihood model (218,448 
different nucleotide contexts). Since the number of possible nucleotide contexts was too large to be visualized directly, we plotted the data point density. 
The Pearson correlation coefficient (R) of each plot is annotated at the bottom right.
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Extended Data Fig. 4 | Extended nucleotide contexts contribute to the performance of the composite likelihood model. We examined whether 
accounting for extended contexts beyond trinucleotide contexts improved the fit of the composite likelihood model. To this end, we varied the number of 
nucleotides in the composite likelihood model between 0 (i.e. only substitution types) and 6 (i.e. 7-nucleotide contexts). We computed the residual sum 
of squared differences between observed mutation counts and the predictions of the composite likelihood model. As a negative control, we determined 
the residual sum of squares for a uniform distribution. This baseline was used to normalize the residual sum of squares for each cancer type. For some 
cancer types with ‘flat’ mutation signatures, nucleotide contexts only had minor impact on the fit of the model, but did not decrease the performance of 
the model (for example, lung adeno., n = 446 samples). For other cancer types, the fit of the model largely depended on the trinucleotide context, but not 
on the extended nucleotide context (e.g., prostate cancer, n = 880). For most cancer types with high background mutation rates, the fit of the composite 
likelihood model strongly depended on the extended nucleotide context (e.g., bladder, n = 317; breast, n = 1443; cervical, n = 192; colorectal, n = 223; 
endometrial cancer, n = 327; melanoma, n = 582).
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Extended Data Fig. 5 | A large-scale cohort of whole-exome sequencing data to identify rare cancer genes. To systematically identify candidate cancer 
genes, we analyzed sequencing data from 11,873 individual tumor samples using the statistical framework that we had developed in this study. Our study 
cohort contained whole-exome sequencing data from 32 TCGA-related (orange) and 55 TCGA-independent (blue) projects.
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Extended Data Fig. 6 | Benchmarking of the performance of MutPanning for cancer gene identification. We benchmarked the performance of our 
method against 7 previously published methods for cancer gene identification based on the sequencing data of 11,873 samples spanning 28 different 
cancer types. The exact number of samples per cancer type can be found in Extended Data Fig. 5. To benchmark the performance of a method, we sorted 
genes according to the significance values (adjusted for multiple testing) returned by the method. As a conservative approximation of the true-positive 
rate we used Cancer Gene Census (CGC) genes (a, b, c) and OncoKB genes (d, e, f) to derive ROC and precision-recall curves. We quantified the 
performance of each method as the area under the ROC curve (AUC) for the top 150 (a, d) or 1000 (b, e) non-CGC/OncoKB genes, respectively. Further, 
we determined the precision at 5% recall for each method (c, f). We normalized these measures to the maximum within each cancer type.
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Extended Data Fig. 7 | Comparison of different methods for cancer-gene identification. We benchmarked the performance of our method against 7 
previously published methods for cancer gene identification based on the sequencing data of 11,873 samples spanning 28 different cancer types. To 
benchmark the performance of a method, we sorted genes according to the significance values (adjusted for multiple testing) returned by the method. 
As a conservative approximation of the true-positive rate we used Cancer Gene Census (CGC) genes (a, c, e) and OncoKB genes (b, d, f) to derive ROC 
and precision-recall curves. We quantified the performance of each method as the area under the ROC curve (AUC) for the top 150 (a, b) or 1000 (c, d) 
non-CGC/OncoKB genes, respectively. Further, we determined the precision at 5% recall for each method (e, f). Box plots indicate the distribution of these 
performance measures for each method across cancer types. Each cancer type is represented by a dot. Boxes indicate the 25%/75% interquartile range, 
whiskers extend to the 5%/95%-quantile range. The median of each distribution is indicated as a vertical line.
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Extended Data Fig. 8 | Comparison of performance measures derived from CGC versus OncoKB. We benchmarked the performance of our method 
against 7 previously published methods for cancer gene identification based on the sequencing data of 11,873 samples spanning 28 different cancer types. 
To benchmark the performance of a method, we sorted genes according to the significance values (adjusted for multiple testing) returned by the method. 
As a conservative approximation of the true-positive rate we used Cancer Gene Census (CGC) genes and OncoKB genes to derive ROC and precision-
recall curves. We quantified the performance of each method as the area under the ROC curve (AUC) for the top 150 (a) or 1000 (b) non-CGC/OncoKB 
genes, respectively. Further, we determined the precision at 5% recall for each method (c). This figure compares the performance measures derived 
from the CGC (x-axis) and OncoKB (y-axis) databases. Each dot represents the AUC/precision of a different method (dot color) for an individual cancer 
type. The concordance between CGC and OncoKB measures suggests that our measure of performance does not entirely depend on the dataset used to 
approximate the true-positive rate.
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Extended Data Fig. 9 | Comparison of methods in two homogeneously processed datasets. We compared the performance of MutPanning with 7 other 
methods on two independently processed datasets (TCGA subcohort (a-c, g-i), n = 7060 samples; MC3 dataset (d-f, j-l), n = 9079). We used the Cancer 
Gene Census (CGC) (a-f) and OncoKB (g-l) for benchmarking. We quantified the performance by the AUC of the ROC curve of the top 1,000 non-CGC/
OncoKB genes returned by each method. a, d, g, j, Box plots indicate the distribution of performance measures for each method. Boxes indicate the 
25%/75% interquartile range, whiskers extend to the 5%/95%-quantile range. Distribution medians are indicated as vertical lines. Each dot represents 
an AUC for one of the 27 cancer types in the TCGA and MC3 datasets. b, e, h, k, We normalized AUCs by the maximum AUC within each tumor type. 
We then compared these normalized AUCs between methods across cancer types. c, f, i, l, We compared the AUCs obtained from our original study 
cohort with the AUCs from TCGA and MC3 based on Pearson correlation. Each dot reflects a cancer type/method. Cohort sizes for TCGA/MC3 datasets: 
bladder: 130/386; blood: 197/139; brain: 576/821; breast: 975/779; cervix: 192/274; cholangio: 35/34; colorectal: 223/316; endometrium: 305/451; 
gastroesophageal: 467/529; head&neck: 279/502; kidney clear: 417/368; kidney non-clear: 227/340; liver: 194/354; lung adenocarcinoma: 230/431; 
lung squamous: 173/464; lymph: 48/37; ovarian: 316/408; pancreas: 149/155; pheochromocytoma: 179/179; pleura: 82/81; prostate: 323/477; sarcoma: 
247/204; skin: 342/422; testicular: 149/145; thymus: 123/121; thyroid: 402/492; uveal melanoma: 80/80.
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Extended Data Fig. 10 | Recurrent mutations in domains of protein–DNA interaction. Significance values in this figure legend were computed 
using MutPanning and adjusted for multiple testing (false discovery rate, FDR). Recurrent SOX17 mutations in endometrial cancer (n = 327 samples, 
FDR = 8.77 × 10−3) are located in the high-mobility-group box domain at the SOX17–DNA interface (PDB: 4A3N superposed with 3F27). POLR2A harbors 
recurrent mutations in lung adenocarcinoma (n = 446, FDR = 9.28 × 10−6) at the end of an alpha helical segment that is directly pointed at the major 
groove of the double stranded DNA (PDB: 5IYB). The open complex of a cryo-EM multicomponent structure where the melted single-stranded template 
DNA is inserted into the active site and RNA polymerase II locates the transcription start site is visualized. CEBPA harbors recurrent mutations in 
hematological malignancies (n = 1,018, FDR = 1.16 × 10−7) at the cross-over interface of the two CEBPA homodimers (PDB: 1NWQ). GATA3 (PDB: 4HCA) 
harbors recurrent mutations in breast cancer (n = 1,443, FDR < 10−20) at Asn334, which is located in the GATA-type 2 zinc finger (res317–res341), as well 
as the residue Met294, which is located peripheral to the GATA-type 1 zinc finger domain (res263–res287). RUNX1 harbors recurrent mutations in breast 
cancer (n = 1,443, FDR = 2.22 × 10−4) and hematological malignancies (n = 1018, FDR = 1.94 × 10−5). Arg174 plays an important role for DNA recognition 
and facilitates the formation of hydrogen bond interactions to a guanosine base from the consensus DNA binding sequence of RUNX1 (PDB: 1H9D).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection from the Online Methods (sections "Sequencing data curation and variant filtering" and "Visualization of mutations using protein crystal 
structures") and the Supplementary Note (sections "Selection of sequencing studies" and "Additional data used in this study"):  
"[...] we compiled the whole-exome sequencing data from 32 TCGA-related projects (7,091 samples), as well as from 55 TCGA-
independent publications (4,856 samples). Data were manually curated to fulfill the following criteria: 
• whole-exome sequencing data only, in particular no whole-genome sequencing data, no targeted sequencing data 
• patient samples only, in particular no cell lines, mouse models or patient-derived xenograft models 
• sequencing data had been aligned against the Hg19 human reference genome 
• all tumor samples had been sequenced against a matched normal, and studies had filtered out germline variants from the matched 
normal, as well as common germline variants 
• sequencing results were available as a standard mutation annotation file (MAF) or as a comparable format 
• studies had applied filters for common sequencing artifacts, including artifacts introduced by DNA oxidation during sequencing, low-
confidence mutations with strand bias, and low quality variant calls 
For studies where only a subset of samples satisfied all these criteria, we manually selected those samples for inclusion in this study. 
Further, we discarded samples that had been flagged for low quality in either of these studies. Mutation annotation files (MAF) for TCGA-
related projects were directly obtained from the TCGA Gene Data Analysis Center (GDAC) data portal hosted by the Broad Institute (gdac.
broadinstitute.org, latest data version from 01/28/2016, doi:10.7908/C11G0KM9). MAF files for TCGA-independent studies were either 
downloaded from the cBioPortal platform (cbioportal.org) or - if not available there - directly form the supplement of the publications. 
[...] 
Finally, mutations from this combined MAF file were processed through a homogeneous filtering step, in order to minimize sequencing 
artifacts, mutation calling errors, and germline variants that might have slipped through the variant filters applied in each study. Our 
variant filtering pipeline included the following filters: 
• Filtering of common germline variants: Each mutation was compared against the Exome Aggregation Consotrium (ExAC) database, 
which reports germline variants of 60,706 individuals. As similarly described previously, we removed all variants from the MAF file that 
occurred more than 10 times in any of the 7 ExAC subpopulations. 
• Removal of OxoG and strand bias sequencing artifacts: The 8-oxoguanine (OxoG) artifact results from excessive oxidation during 
sequence library preparation, whereas the strand bias artifact produces disparities between G>T and C>A mutation counts at low variant 
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allele frequencies. We used the MC3 dataset in order to eliminate OxoG and strand bias artifacts from our MAF file, which were 
identified by the DetOxoG tool. 
• Removal of low quality samples: Samples for which >10% of the somatic mutations were flagged as artifacts or germline variants were 
entirely removed from the study. In total, this resulted in the removal of 0.62% (N=74) of all samples.  
In this way, we arrived at a study cohort of 11,873 tumor samples, spanning 28 different cancer types. The final MAF file, which we used 
for all subsequent analyses in this study, is available online (www.cancer-genes.org). [...] 
The Hg19 human reference exome sequence and the Blat alignment tool were downloaded from the UCSC genome browser (https://
genome.ucsc.edu). Genomic coordinates of exon/intron boundaries for each gene were annotated using the RefSeq database (https://
www.ncbi.nlm.nih.gov/refseq/). The coverage files of all TCGA tumor samples were obtained in a wig file format (http://gdac.
broadinstitute.org/runs/stddata__2016_01_28/data/). Sequencing data for the TCGA validation was part of our original study cohort and 
obtained from gdac.broadinstitute.org (cf. above). The data for the MC3 dataset were obtained from Ellrot et al. via https://gdc.cancer.
gov/about-data/publications/mc3-2017 (publicly available Maf file). We then excluded samples that were hypermutated and that were 
flagged based on pathology exactly as described in Bailey et al. (“Data preparation” section of their paper). That way, we arrived at the 
same Maf file of 9,079 samples as in Bailey et al.10 Details on the underlying variant calling and filtering pipeline can be found in Ellrot et 
al., 2018. Details on the underlying variant calling and filtering pipeline of the TCGA dataset can be found on http://gdac.broadinstitute.
org/ [...] Protein structures were visualized using [...] publicly available coordinate files derived from The Protein Data Bank (PDB)."

Data analysis The Online Methods (section "Statistical analyses to identify driver genes") and the Supplementary Note (sections "A composite 
likelihood model to quantify the mutability of genomic positions based on nucleotide contexts" and "A statistical framework for the 
identification of cancer genes") provide a detailed description of the statistical framework that we developed and used to identify 
significant gene-tumor pairs. Furthermore, a brief overview of the statistical framework is provided in the results of the main text ("A 
framework for identifying driver genes in cancer").  In brief, our statistical model consists of the following six major steps: 
1.) Individual tumor samples were clustered according to their context-dependent distribution of somatic passenger mutations (Bayesian 
hierarchical clustering to guarantee compatibility of the clusters with the statistics used in the subsequent steps). 
2.) For each cluster, the broad nucleotide context around its somatic mutations was characterized (composite likelihood model). 
3.) For each position in the human exome, its local mutation probability was determined based on its surrounding nucleotide context 
(composite likelihood model) as well as the regional background mutation rate (Bayesian model calibrated with the help of synonymous 
mutations). 
4.) We compared the nucleotide context around mutations with the characteristic nucleotide context around passenger mutations 
(Multinomial distribution), thereby determining whether the mutation occured in a "usual" nucleotide context (high chance of being a 
passenger mutation) or "unusual" nucleotide context (lower chance of being a passenger mutation). 
5.) Based on this comparison, we identified genes harboring a significant excess of mutations in unusual nucleotide contexts that differed 
from the characteristic context around passenger mutations (Monte Carlo simulation). The rationale behind this test was that a shift 
from usual to unusual nucleotide contexts reflects the shift of driver mutations from functionally neutral towards functionally important 
positions without prior knowledge of the location of functional positions (cf. introduction in the main text for a more detailed explanation 
of this rationale). 
6.) In addition to unusual nucleotide contexts, our method further exploits signals used by previous methods to identify driver genes. For 
instance, we searched for genes with an increased number of nonsynonymous mutations compared with the local background mutation 
rate (mutational recurrence). For this purpose, we followed a Bayesian strategy and modeled the fluctuation of the background mutation 
rate across the exome based on the number of synonymous mutations in each gene (prior distribution). Based on the number of 
synonymous mutations in a gene, we then estimated the local background mutation rate (posterior distribution). Lastly, we tested 
whether the observed number of nonsynonymous mutations in the same gene exceeded the expectation of the local background 
mutation rate significantly. 
We incorporated our complete statistical framework in a computational tool called MutPanning. The source code of MutPanning was 
written in Java  and is publicly available on the GitHub repository (https://github.com/vanallenlab/MutPanningV2).  
Protein structures in were visualized using The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC and the respective 
publicly available coordinate files derived from The Protein Data Bank (PDB). In detail, X-ray diffraction crystal structures of CEBPA (PDB: 
1NWQ), GATA3 (PDB: 4HCA), HDAC4 (PDB: 4CBY), RUNX1 (PDB: 1H9D), and SOX17 (PDB: 4A3N superposed with 3F27), as well as electron 
microscopy structures of ANAPC1 (PDB: 5G05), and POLR2A (5IYB) were utilized (cf. section 4.1 for more details).  
Publications supporting the significant gene-tumor pairs reported in this study were identified through the NCBI Entrez Programming 
Utilities (Esearch, Efetch, and Elink tools) (Online Methods, section "Stratification of driver genes based on literature support", and 
Supplementary Note, section "Stratification of driver genes based on literature support"). We compared the performance of our 
approach with six current methods, which are widely used to identify driver genes and cover a wide range of different signals used for 
driver gene detection (MutSigCV, dNdScv, OncodriveCLUST, OncodriveFM, OncodriveFML, e-Driver) (cf. Supplementary Note, section 
"Method Comparison"). Further, we used experimental data from the STRING database to study physical interactions between driver 
genes in our catalog, and to cluster driver genes into signaling pathways (Online Methods, "Analysis of physical interactions between 
driver genes"). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The manuscript describes the availability of the sequencing data of the full study cohort in the Data availability section: 
"Data availability  
A complete mutation annotation file of the sequencing data used in this study is available on www.cancer-genes.org and in the Supplementary Information." 
 
Furthemore, the availability of the MutPanning software and the source code is described in the Code availability section: 
"Code availability  
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MutPanning can be downloaded as an interactive software package from www.cancer-genes.org and from the Supplementary Information. MutPanning can be run 
on a local computer with at least 1 CPU, 8 GB memory, and 2.5 GB hard drive. In addition, an online version of MutPanning is available through the GenePattern 
platform (http://www.genepattern.org/modules/docs/MutPanning and http://bit.ly/mutpanning-gp). The MutPanning source code is available on GitHub (https://
github.com/vanallenlab/MutPanningV2). MutPannig is distributed under the BSD-3-Clause open source license."
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Sample size In total, we examined sequencing data from 11,873 individual tumor samples from 32 TCGA-related projects (7,091 samples), as well as from 
55 TCGA-independent publications (4,856 samples). As part of our filtering pipeline, we removed of low quality samples, i.e. samples for 
which >10% of the somatic mutations were flagged as artifacts or germline variants. In total, this resulted in the removal of 74 samples, 
thereby arriving at a cohort size of 11,873 tumor samples. In addition, we restricted ourselves to whole-exome sequencing data, as we did not 
want technical differences (e.g. coverage fluctuation in whole-genome sequencing data) to confound our analysis (cf. Supplementary Note, 
section "Selection of sequencing studies", for more details).  
No statistical methods were used to predetermine the sample size of our cohort. Previous studies have pointed out that the statistical power 
to identify driver genes increases with the cohort size (Lawrence et al. 2014). A power analysis in our study (Supplementary Figure 24) 
suggests that the statistical power also depends on a myriad of other factors (e.g. selection frequency, background mutation rate, epigenomic 
covariants, deviation of driver mutations from passenger mutation nucleotide contexts). Since these factors are tumor type-intrinsic, the 
rationale behind our study design was to aggregate as many whole-exome sequencing data as possible based on the sequencing data 
currently available in the literature. Compared with other pan-cancer studies for driver gene identification, our cohort size was larger 
(n=11,873 samples vs. Bailey et al. 2018, n=9,423, Martincorena et al. 2017, n=7,664, Lawrence et al. 2014, n=4,742). Furthermore, we used 
two homogeneously processed study cohorts for validation purposes (TCGA subcohort, n=7,060, MC3 dataset, n=9,079). Our study identified 
driver genes at mutation frequencies as low as ~1%. However, we cannot assume that the size of our study cohort was sufficient to 
comprehensively identify all driver genes that exist, especially in tumor types with high background mutation rates and a low context 
dependency (e.g. lung cancer). It is very likely that additional driver genes exist with mutation frequencies <1% that were missed by our study 
based on the sequencing data available in the literature.

Data exclusions We included data from whole-exome sequencing studies into our study cohort that fulfilled the following criteria (cf. Online Methods, section 
"Sequencing data curation and variant filtering", and Supplementary Note, section "Selection of sequencing studies", for more details):  
• whole-exome sequencing data only, in particular no whole-genome sequencing data, no targeted sequencing data  
• patient samples only, in particular no cell lines, mouse models or patient-derived xenograft models  
• sequencing data had been aligned against the Hg19 human reference genome  
• all tumor samples had a matched normal  
• sequencing results were available as a standard mutation annotation file (MAF) or as a comparable format  
• samples which had been flagged for bad quality in the study were discarded  
For studies where only a subset of samples satisfied all these criteria, we manually selected those samples for inclusion in this study. Finally, 
mutations from this combined MAF file were processed through a homogeneous filtering step in order to minimize sequencing artifacts, 
mutation calling errors, and germline variants that might have slipped through the variant filters applied in each study. Our variant filtering 
step included the following filters: 
• Filtering of common germline variants: Each mutation was compared against the Exome Aggregation Consotrium (ExAC) database, which 
reports germline variants of 60,706 individuals. As similarly described previously, we removed all variants from the MAF file that occurred 
more than 10 times in any of the 7 ExAC subpopulations. 
• Removal of OxoG and strand bias sequencing artifacts: The 8-oxoguanine (OxoG) artifact results from excessive oxidation during sequence 
library preparation, whereas the strand bias artifact produces disparities between G>T and C>A mutation counts at low variant allele 
frequencies. We used the MC3 dataset in order to eliminate OxoG and strand bias artifacts from our MAF file, which were identified by the 
DetOxoG tool. 
• Removal of low quality samples: Samples for which >10% of the somatic mutations were flagged as artifacts or germline variants were 
entirely removed from the study. In total, this resulted in the removal of 0.62% (N=74) of all samples.  
Mutation annotation files (MAF) for TCGA-related projects were directly obtained from the TCGA Gene Data Analysis Center (GDAC) data 
portal hosted by the Broad Institute (gdac.broadinstitute.org, latest data version from 01/28/2016, doi:10.7908/C11G0KM9). MAF files for 
TCGA-independent studies were either downloaded from the cBioPortal platform (cbioportal.org) or - if not available there - directly form the 
supplement of the publications. We integrated all MAF files into a combined MAF file and removed duplicate patients from the combined 
MAF file. Apart from these criteria, no samples were excluded. Similar criteria had been used in other large-scale sequencing studies 
(Lawrence et al. 2014, Bailey et al. 2018, Ellrott et al. 2018, The AACR Project GENIE Consortium 2017), but these exclusion criteria had not 
been pre-established prior to this study.

Replication To allow independent scientists to reproduce our results and apply our statistical model to their own data, we provide source code and 
compiled versions of our statistical tool on www.cancer-genes.org, genepattern.org, the GitHub repository (https://github.com/vanallenlab/
MutPanningV2). Further, MutPanning can be downloaded as an interactive software package from www.cancer-genes.org and from the 
supplement. This version can be run on a local computer with at least 1 CPU, 8 GB memory, and 2.5 GB hard drive, preferably with Windows 
or MacOS. In addition, an online version of MutPanning is available through the GenePattern platform (http://www.genepattern.org/
modules/docs/MutPanning for the documentation, http://bit.ly/mutpanning-gp to directly get to the MutPanning module one GenePattern, 
sign in required). Executing MutPanning through the interactive desktop version locally or through the GenePattern platform online does not 
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require any computational expertise,.  
To guarantee that our instructions all the steps required for successful reproduction of our results, we asked two graduate students in our lab 
to reproduce our results. Both students were able to reproduce the significantly mutated melanoma genes reported in this study. All attempts 
at replication were successful.

Randomization Our study included data from 32 TCGA-related projects (7,091 samples), as well as from 55 TCGA-independent publications (4,856 samples). 
We grouped tumor samples according to their cancer types, based on the cancer types reported in the original sequencing studies. Most of 
these tumor types were defined as in the TCGA marker papers (27/28 tumor types). In this way, we arrived at a study cohort of 11,873 tumor 
samples, spanning 28 different cancer types and including the sequencing data from 87 sequencing projects (cf. Online Methods, section 
"Sequencing data curation and variant filtering", and Supplementary Note, section "Selection of sequencing studies", for more details).  
A more detailed description of the cancer types can be found in the Supplementary Note. Further, Supplementary Table 1 provides literature 
references to the original sequencing studies. As we analyzed samples within the same cancer types as those noted in the publications from 
which the sequencing data was obtained, randomization of samples was not applicable to our study design. Hence, no randomization step 
was used to allocate tumor samples to their experimental groups (i.e., their cancer types).

Blinding Investigators were not blinded to group allocation (i.e., the cancer type of each sample) during data collection and data analysis, as blinding 
was not relevant for the design of this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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